mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* Add draft for lora text encoder scale * Improve naming * fix: training dreambooth lora script. * Apply suggestions from code review * Update examples/dreambooth/train_dreambooth_lora.py * Apply suggestions from code review * Apply suggestions from code review * add lora mixin when fit * add lora mixin when fit * add lora mixin when fit * fix more * fix more --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
470 lines
19 KiB
Python
470 lines
19 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import gc
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
|
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
|
|
from diffusers.models.attention_processor import (
|
|
Attention,
|
|
AttnProcessor,
|
|
AttnProcessor2_0,
|
|
LoRAAttnProcessor,
|
|
LoRAAttnProcessor2_0,
|
|
LoRAXFormersAttnProcessor,
|
|
XFormersAttnProcessor,
|
|
)
|
|
from diffusers.utils import TEXT_ENCODER_ATTN_MODULE, floats_tensor, torch_device
|
|
|
|
|
|
def create_unet_lora_layers(unet: nn.Module):
|
|
lora_attn_procs = {}
|
|
for name in unet.attn_processors.keys():
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
|
if name.startswith("mid_block"):
|
|
hidden_size = unet.config.block_out_channels[-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = unet.config.block_out_channels[block_id]
|
|
lora_attn_processor_class = (
|
|
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
|
)
|
|
lora_attn_procs[name] = lora_attn_processor_class(
|
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
|
|
)
|
|
unet_lora_layers = AttnProcsLayers(lora_attn_procs)
|
|
return lora_attn_procs, unet_lora_layers
|
|
|
|
|
|
def create_text_encoder_lora_attn_procs(text_encoder: nn.Module):
|
|
text_lora_attn_procs = {}
|
|
lora_attn_processor_class = (
|
|
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
|
)
|
|
for name, module in text_encoder.named_modules():
|
|
if name.endswith(TEXT_ENCODER_ATTN_MODULE):
|
|
text_lora_attn_procs[name] = lora_attn_processor_class(
|
|
hidden_size=module.out_proj.out_features, cross_attention_dim=None
|
|
)
|
|
return text_lora_attn_procs
|
|
|
|
|
|
def create_text_encoder_lora_layers(text_encoder: nn.Module):
|
|
text_lora_attn_procs = create_text_encoder_lora_attn_procs(text_encoder)
|
|
text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
|
|
return text_encoder_lora_layers
|
|
|
|
|
|
def set_lora_up_weights(text_lora_attn_procs, randn_weight=False):
|
|
for _, attn_proc in text_lora_attn_procs.items():
|
|
# set up.weights
|
|
for layer_name, layer_module in attn_proc.named_modules():
|
|
if layer_name.endswith("_lora"):
|
|
weight = (
|
|
torch.randn_like(layer_module.up.weight)
|
|
if randn_weight
|
|
else torch.zeros_like(layer_module.up.weight)
|
|
)
|
|
layer_module.up.weight = torch.nn.Parameter(weight)
|
|
|
|
|
|
class LoraLoaderMixinTests(unittest.TestCase):
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
steps_offset=1,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
|
|
text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder)
|
|
|
|
pipeline_components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
}
|
|
lora_components = {
|
|
"unet_lora_layers": unet_lora_layers,
|
|
"text_encoder_lora_layers": text_encoder_lora_layers,
|
|
"unet_lora_attn_procs": unet_lora_attn_procs,
|
|
}
|
|
return pipeline_components, lora_components
|
|
|
|
def get_dummy_inputs(self):
|
|
batch_size = 1
|
|
sequence_length = 10
|
|
num_channels = 4
|
|
sizes = (32, 32)
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_channels) + sizes)
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
|
|
pipeline_inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "numpy",
|
|
}
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
# copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
|
|
|
|
def get_dummy_tokens(self):
|
|
max_seq_length = 77
|
|
|
|
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))
|
|
|
|
prepared_inputs = {}
|
|
prepared_inputs["input_ids"] = inputs
|
|
return prepared_inputs
|
|
|
|
def create_lora_weight_file(self, tmpdirname):
|
|
_, lora_components = self.get_dummy_components()
|
|
LoraLoaderMixin.save_lora_weights(
|
|
save_directory=tmpdirname,
|
|
unet_lora_layers=lora_components["unet_lora_layers"],
|
|
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
|
|
)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
|
|
|
|
def test_lora_save_load(self):
|
|
pipeline_components, lora_components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**pipeline_components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
_, _, pipeline_inputs = self.get_dummy_inputs()
|
|
|
|
original_images = sd_pipe(**pipeline_inputs).images
|
|
orig_image_slice = original_images[0, -3:, -3:, -1]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
LoraLoaderMixin.save_lora_weights(
|
|
save_directory=tmpdirname,
|
|
unet_lora_layers=lora_components["unet_lora_layers"],
|
|
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
|
|
)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
|
|
sd_pipe.load_lora_weights(tmpdirname)
|
|
|
|
lora_images = sd_pipe(**pipeline_inputs).images
|
|
lora_image_slice = lora_images[0, -3:, -3:, -1]
|
|
|
|
# Outputs shouldn't match.
|
|
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
|
|
|
|
def test_lora_save_load_safetensors(self):
|
|
pipeline_components, lora_components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**pipeline_components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
_, _, pipeline_inputs = self.get_dummy_inputs()
|
|
|
|
original_images = sd_pipe(**pipeline_inputs).images
|
|
orig_image_slice = original_images[0, -3:, -3:, -1]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
LoraLoaderMixin.save_lora_weights(
|
|
save_directory=tmpdirname,
|
|
unet_lora_layers=lora_components["unet_lora_layers"],
|
|
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
|
|
safe_serialization=True,
|
|
)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
|
|
sd_pipe.load_lora_weights(tmpdirname)
|
|
|
|
lora_images = sd_pipe(**pipeline_inputs).images
|
|
lora_image_slice = lora_images[0, -3:, -3:, -1]
|
|
|
|
# Outputs shouldn't match.
|
|
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
|
|
|
|
def test_lora_save_load_legacy(self):
|
|
pipeline_components, lora_components = self.get_dummy_components()
|
|
unet_lora_attn_procs = lora_components["unet_lora_attn_procs"]
|
|
sd_pipe = StableDiffusionPipeline(**pipeline_components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
_, _, pipeline_inputs = self.get_dummy_inputs()
|
|
|
|
original_images = sd_pipe(**pipeline_inputs).images
|
|
orig_image_slice = original_images[0, -3:, -3:, -1]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
unet = sd_pipe.unet
|
|
unet.set_attn_processor(unet_lora_attn_procs)
|
|
unet.save_attn_procs(tmpdirname)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
|
|
sd_pipe.load_lora_weights(tmpdirname)
|
|
|
|
lora_images = sd_pipe(**pipeline_inputs).images
|
|
lora_image_slice = lora_images[0, -3:, -3:, -1]
|
|
|
|
# Outputs shouldn't match.
|
|
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
|
|
|
|
def test_text_encoder_lora_monkey_patch(self):
|
|
pipeline_components, _ = self.get_dummy_components()
|
|
pipe = StableDiffusionPipeline(**pipeline_components)
|
|
|
|
dummy_tokens = self.get_dummy_tokens()
|
|
|
|
# inference without lora
|
|
outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
|
|
assert outputs_without_lora.shape == (1, 77, 32)
|
|
|
|
# create lora_attn_procs with zeroed out up.weights
|
|
text_attn_procs = create_text_encoder_lora_attn_procs(pipe.text_encoder)
|
|
set_lora_up_weights(text_attn_procs, randn_weight=False)
|
|
|
|
# monkey patch
|
|
pipe._modify_text_encoder(text_attn_procs)
|
|
|
|
# verify that it's okay to release the text_attn_procs which holds the LoRAAttnProcessor.
|
|
del text_attn_procs
|
|
gc.collect()
|
|
|
|
# inference with lora
|
|
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
|
|
assert outputs_with_lora.shape == (1, 77, 32)
|
|
|
|
assert torch.allclose(
|
|
outputs_without_lora, outputs_with_lora
|
|
), "lora_up_weight are all zero, so the lora outputs should be the same to without lora outputs"
|
|
|
|
# create lora_attn_procs with randn up.weights
|
|
text_attn_procs = create_text_encoder_lora_attn_procs(pipe.text_encoder)
|
|
set_lora_up_weights(text_attn_procs, randn_weight=True)
|
|
|
|
# monkey patch
|
|
pipe._modify_text_encoder(text_attn_procs)
|
|
|
|
# verify that it's okay to release the text_attn_procs which holds the LoRAAttnProcessor.
|
|
del text_attn_procs
|
|
gc.collect()
|
|
|
|
# inference with lora
|
|
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
|
|
assert outputs_with_lora.shape == (1, 77, 32)
|
|
|
|
assert not torch.allclose(
|
|
outputs_without_lora, outputs_with_lora
|
|
), "lora_up_weight are not zero, so the lora outputs should be different to without lora outputs"
|
|
|
|
def test_text_encoder_lora_remove_monkey_patch(self):
|
|
pipeline_components, _ = self.get_dummy_components()
|
|
pipe = StableDiffusionPipeline(**pipeline_components)
|
|
|
|
dummy_tokens = self.get_dummy_tokens()
|
|
|
|
# inference without lora
|
|
outputs_without_lora = pipe.text_encoder(**dummy_tokens)[0]
|
|
assert outputs_without_lora.shape == (1, 77, 32)
|
|
|
|
# create lora_attn_procs with randn up.weights
|
|
text_attn_procs = create_text_encoder_lora_attn_procs(pipe.text_encoder)
|
|
set_lora_up_weights(text_attn_procs, randn_weight=True)
|
|
|
|
# monkey patch
|
|
pipe._modify_text_encoder(text_attn_procs)
|
|
|
|
# verify that it's okay to release the text_attn_procs which holds the LoRAAttnProcessor.
|
|
del text_attn_procs
|
|
gc.collect()
|
|
|
|
# inference with lora
|
|
outputs_with_lora = pipe.text_encoder(**dummy_tokens)[0]
|
|
assert outputs_with_lora.shape == (1, 77, 32)
|
|
|
|
assert not torch.allclose(
|
|
outputs_without_lora, outputs_with_lora
|
|
), "lora outputs should be different to without lora outputs"
|
|
|
|
# remove monkey patch
|
|
pipe._remove_text_encoder_monkey_patch()
|
|
|
|
# inference with removed lora
|
|
outputs_without_lora_removed = pipe.text_encoder(**dummy_tokens)[0]
|
|
assert outputs_without_lora_removed.shape == (1, 77, 32)
|
|
|
|
assert torch.allclose(
|
|
outputs_without_lora, outputs_without_lora_removed
|
|
), "remove lora monkey patch should restore the original outputs"
|
|
|
|
def test_text_encoder_lora_scale(self):
|
|
pipeline_components, lora_components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**pipeline_components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
_, _, pipeline_inputs = self.get_dummy_inputs()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
LoraLoaderMixin.save_lora_weights(
|
|
save_directory=tmpdirname,
|
|
unet_lora_layers=lora_components["unet_lora_layers"],
|
|
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
|
|
)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
|
|
sd_pipe.load_lora_weights(tmpdirname)
|
|
|
|
lora_images = sd_pipe(**pipeline_inputs).images
|
|
lora_image_slice = lora_images[0, -3:, -3:, -1]
|
|
|
|
lora_images_with_scale = sd_pipe(**pipeline_inputs, cross_attention_kwargs={"scale": 0.5}).images
|
|
lora_image_with_scale_slice = lora_images_with_scale[0, -3:, -3:, -1]
|
|
|
|
# Outputs shouldn't match.
|
|
self.assertFalse(
|
|
torch.allclose(torch.from_numpy(lora_image_slice), torch.from_numpy(lora_image_with_scale_slice))
|
|
)
|
|
|
|
def test_lora_unet_attn_processors(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
self.create_lora_weight_file(tmpdirname)
|
|
|
|
pipeline_components, _ = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**pipeline_components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
# check if vanilla attention processors are used
|
|
for _, module in sd_pipe.unet.named_modules():
|
|
if isinstance(module, Attention):
|
|
self.assertIsInstance(module.processor, (AttnProcessor, AttnProcessor2_0))
|
|
|
|
# load LoRA weight file
|
|
sd_pipe.load_lora_weights(tmpdirname)
|
|
|
|
# check if lora attention processors are used
|
|
for _, module in sd_pipe.unet.named_modules():
|
|
if isinstance(module, Attention):
|
|
attn_proc_class = (
|
|
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
|
)
|
|
self.assertIsInstance(module.processor, attn_proc_class)
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
|
|
def test_lora_unet_attn_processors_with_xformers(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
self.create_lora_weight_file(tmpdirname)
|
|
|
|
pipeline_components, _ = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**pipeline_components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
# enable XFormers
|
|
sd_pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
# check if xFormers attention processors are used
|
|
for _, module in sd_pipe.unet.named_modules():
|
|
if isinstance(module, Attention):
|
|
self.assertIsInstance(module.processor, XFormersAttnProcessor)
|
|
|
|
# load LoRA weight file
|
|
sd_pipe.load_lora_weights(tmpdirname)
|
|
|
|
# check if lora attention processors are used
|
|
for _, module in sd_pipe.unet.named_modules():
|
|
if isinstance(module, Attention):
|
|
self.assertIsInstance(module.processor, LoRAXFormersAttnProcessor)
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
|
|
def test_lora_save_load_with_xformers(self):
|
|
pipeline_components, lora_components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**pipeline_components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
_, _, pipeline_inputs = self.get_dummy_inputs()
|
|
|
|
# enable XFormers
|
|
sd_pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
original_images = sd_pipe(**pipeline_inputs).images
|
|
orig_image_slice = original_images[0, -3:, -3:, -1]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
LoraLoaderMixin.save_lora_weights(
|
|
save_directory=tmpdirname,
|
|
unet_lora_layers=lora_components["unet_lora_layers"],
|
|
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
|
|
)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
|
|
sd_pipe.load_lora_weights(tmpdirname)
|
|
|
|
lora_images = sd_pipe(**pipeline_inputs).images
|
|
lora_image_slice = lora_images[0, -3:, -3:, -1]
|
|
|
|
# Outputs shouldn't match.
|
|
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))
|