mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
136 lines
4.7 KiB
Python
136 lines
4.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import StableDiffusionKDiffusionPipeline
|
|
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
@nightly
|
|
@require_torch_gpu
|
|
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_stable_diffusion_1(self):
|
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
sd_pipe.set_scheduler("sample_euler")
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_2(self):
|
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
sd_pipe.set_scheduler("sample_euler")
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1
|
|
|
|
def test_stable_diffusion_karras_sigmas(self):
|
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
sd_pipe.set_scheduler("sample_dpmpp_2m")
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=15,
|
|
output_type="np",
|
|
use_karras_sigmas=True,
|
|
)
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array(
|
|
[0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_noise_sampler_seed(self):
|
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
sd_pipe.set_scheduler("sample_dpmpp_sde")
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
seed = 0
|
|
images1 = sd_pipe(
|
|
[prompt],
|
|
generator=torch.manual_seed(seed),
|
|
noise_sampler_seed=seed,
|
|
guidance_scale=9.0,
|
|
num_inference_steps=20,
|
|
output_type="np",
|
|
).images
|
|
images2 = sd_pipe(
|
|
[prompt],
|
|
generator=torch.manual_seed(seed),
|
|
noise_sampler_seed=seed,
|
|
guidance_scale=9.0,
|
|
num_inference_steps=20,
|
|
output_type="np",
|
|
).images
|
|
|
|
assert images1.shape == (1, 512, 512, 3)
|
|
assert images2.shape == (1, 512, 512, 3)
|
|
assert np.abs(images1.flatten() - images2.flatten()).max() < 1e-2
|