mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update * make style * update * update * update * make style * single file related changes * update * fix * update single file urls and docs * update * fix
298 lines
10 KiB
Python
298 lines
10 KiB
Python
import argparse
|
|
from pathlib import Path
|
|
from typing import Any, Dict
|
|
|
|
import torch
|
|
from accelerate import init_empty_weights
|
|
from safetensors.torch import load_file
|
|
from transformers import T5EncoderModel, T5Tokenizer
|
|
|
|
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
|
|
|
|
|
|
def remove_keys_(key: str, state_dict: Dict[str, Any]):
|
|
state_dict.pop(key)
|
|
|
|
|
|
TOKENIZER_MAX_LENGTH = 128
|
|
|
|
TRANSFORMER_KEYS_RENAME_DICT = {
|
|
"patchify_proj": "proj_in",
|
|
"adaln_single": "time_embed",
|
|
"q_norm": "norm_q",
|
|
"k_norm": "norm_k",
|
|
}
|
|
|
|
TRANSFORMER_SPECIAL_KEYS_REMAP = {
|
|
"vae": remove_keys_,
|
|
}
|
|
|
|
VAE_KEYS_RENAME_DICT = {
|
|
# decoder
|
|
"up_blocks.0": "mid_block",
|
|
"up_blocks.1": "up_blocks.0",
|
|
"up_blocks.2": "up_blocks.1.upsamplers.0",
|
|
"up_blocks.3": "up_blocks.1",
|
|
"up_blocks.4": "up_blocks.2.conv_in",
|
|
"up_blocks.5": "up_blocks.2.upsamplers.0",
|
|
"up_blocks.6": "up_blocks.2",
|
|
"up_blocks.7": "up_blocks.3.conv_in",
|
|
"up_blocks.8": "up_blocks.3.upsamplers.0",
|
|
"up_blocks.9": "up_blocks.3",
|
|
# encoder
|
|
"down_blocks.0": "down_blocks.0",
|
|
"down_blocks.1": "down_blocks.0.downsamplers.0",
|
|
"down_blocks.2": "down_blocks.0.conv_out",
|
|
"down_blocks.3": "down_blocks.1",
|
|
"down_blocks.4": "down_blocks.1.downsamplers.0",
|
|
"down_blocks.5": "down_blocks.1.conv_out",
|
|
"down_blocks.6": "down_blocks.2",
|
|
"down_blocks.7": "down_blocks.2.downsamplers.0",
|
|
"down_blocks.8": "down_blocks.3",
|
|
"down_blocks.9": "mid_block",
|
|
# common
|
|
"conv_shortcut": "conv_shortcut.conv",
|
|
"res_blocks": "resnets",
|
|
"norm3.norm": "norm3",
|
|
"per_channel_statistics.mean-of-means": "latents_mean",
|
|
"per_channel_statistics.std-of-means": "latents_std",
|
|
}
|
|
|
|
VAE_091_RENAME_DICT = {
|
|
# decoder
|
|
"up_blocks.0": "mid_block",
|
|
"up_blocks.1": "up_blocks.0.upsamplers.0",
|
|
"up_blocks.2": "up_blocks.0",
|
|
"up_blocks.3": "up_blocks.1.upsamplers.0",
|
|
"up_blocks.4": "up_blocks.1",
|
|
"up_blocks.5": "up_blocks.2.upsamplers.0",
|
|
"up_blocks.6": "up_blocks.2",
|
|
"up_blocks.7": "up_blocks.3.upsamplers.0",
|
|
"up_blocks.8": "up_blocks.3",
|
|
# common
|
|
"last_time_embedder": "time_embedder",
|
|
"last_scale_shift_table": "scale_shift_table",
|
|
}
|
|
|
|
VAE_SPECIAL_KEYS_REMAP = {
|
|
"per_channel_statistics.channel": remove_keys_,
|
|
"per_channel_statistics.mean-of-means": remove_keys_,
|
|
"per_channel_statistics.mean-of-stds": remove_keys_,
|
|
"model.diffusion_model": remove_keys_,
|
|
}
|
|
|
|
VAE_091_SPECIAL_KEYS_REMAP = {
|
|
"timestep_scale_multiplier": remove_keys_,
|
|
}
|
|
|
|
|
|
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
|
|
state_dict = saved_dict
|
|
if "model" in saved_dict.keys():
|
|
state_dict = state_dict["model"]
|
|
if "module" in saved_dict.keys():
|
|
state_dict = state_dict["module"]
|
|
if "state_dict" in saved_dict.keys():
|
|
state_dict = state_dict["state_dict"]
|
|
return state_dict
|
|
|
|
|
|
def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
|
|
state_dict[new_key] = state_dict.pop(old_key)
|
|
|
|
|
|
def convert_transformer(
|
|
ckpt_path: str,
|
|
dtype: torch.dtype,
|
|
):
|
|
PREFIX_KEY = "model.diffusion_model."
|
|
|
|
original_state_dict = get_state_dict(load_file(ckpt_path))
|
|
with init_empty_weights():
|
|
transformer = LTXVideoTransformer3DModel()
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
new_key = key[:]
|
|
if new_key.startswith(PREFIX_KEY):
|
|
new_key = key[len(PREFIX_KEY) :]
|
|
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
|
|
new_key = new_key.replace(replace_key, rename_key)
|
|
update_state_dict_inplace(original_state_dict, key, new_key)
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
|
|
if special_key not in key:
|
|
continue
|
|
handler_fn_inplace(key, original_state_dict)
|
|
|
|
transformer.load_state_dict(original_state_dict, strict=True, assign=True)
|
|
return transformer
|
|
|
|
|
|
def convert_vae(ckpt_path: str, config, dtype: torch.dtype):
|
|
PREFIX_KEY = "vae."
|
|
|
|
original_state_dict = get_state_dict(load_file(ckpt_path))
|
|
with init_empty_weights():
|
|
vae = AutoencoderKLLTXVideo(**config)
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
new_key = key[:]
|
|
if new_key.startswith(PREFIX_KEY):
|
|
new_key = key[len(PREFIX_KEY) :]
|
|
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
|
|
new_key = new_key.replace(replace_key, rename_key)
|
|
update_state_dict_inplace(original_state_dict, key, new_key)
|
|
|
|
for key in list(original_state_dict.keys()):
|
|
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
|
|
if special_key not in key:
|
|
continue
|
|
handler_fn_inplace(key, original_state_dict)
|
|
|
|
vae.load_state_dict(original_state_dict, strict=True, assign=True)
|
|
return vae
|
|
|
|
|
|
def get_vae_config(version: str) -> Dict[str, Any]:
|
|
if version == "0.9.0":
|
|
config = {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 128,
|
|
"block_out_channels": (128, 256, 512, 512),
|
|
"decoder_block_out_channels": (128, 256, 512, 512),
|
|
"layers_per_block": (4, 3, 3, 3, 4),
|
|
"decoder_layers_per_block": (4, 3, 3, 3, 4),
|
|
"spatio_temporal_scaling": (True, True, True, False),
|
|
"decoder_spatio_temporal_scaling": (True, True, True, False),
|
|
"decoder_inject_noise": (False, False, False, False, False),
|
|
"upsample_residual": (False, False, False, False),
|
|
"upsample_factor": (1, 1, 1, 1),
|
|
"patch_size": 4,
|
|
"patch_size_t": 1,
|
|
"resnet_norm_eps": 1e-6,
|
|
"scaling_factor": 1.0,
|
|
"encoder_causal": True,
|
|
"decoder_causal": False,
|
|
"timestep_conditioning": False,
|
|
}
|
|
elif version == "0.9.1":
|
|
config = {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 128,
|
|
"block_out_channels": (128, 256, 512, 512),
|
|
"decoder_block_out_channels": (256, 512, 1024),
|
|
"layers_per_block": (4, 3, 3, 3, 4),
|
|
"decoder_layers_per_block": (5, 6, 7, 8),
|
|
"spatio_temporal_scaling": (True, True, True, False),
|
|
"decoder_spatio_temporal_scaling": (True, True, True),
|
|
"decoder_inject_noise": (True, True, True, False),
|
|
"upsample_residual": (True, True, True),
|
|
"upsample_factor": (2, 2, 2),
|
|
"timestep_conditioning": True,
|
|
"patch_size": 4,
|
|
"patch_size_t": 1,
|
|
"resnet_norm_eps": 1e-6,
|
|
"scaling_factor": 1.0,
|
|
"encoder_causal": True,
|
|
"decoder_causal": False,
|
|
}
|
|
VAE_KEYS_RENAME_DICT.update(VAE_091_RENAME_DICT)
|
|
VAE_SPECIAL_KEYS_REMAP.update(VAE_091_SPECIAL_KEYS_REMAP)
|
|
return config
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint"
|
|
)
|
|
parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint")
|
|
parser.add_argument(
|
|
"--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory"
|
|
)
|
|
parser.add_argument(
|
|
"--typecast_text_encoder",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether or not to apply fp16/bf16 precision to text_encoder",
|
|
)
|
|
parser.add_argument("--save_pipeline", action="store_true")
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved")
|
|
parser.add_argument("--dtype", default="fp32", help="Torch dtype to save the model in.")
|
|
parser.add_argument(
|
|
"--version", type=str, default="0.9.0", choices=["0.9.0", "0.9.1"], help="Version of the LTX model"
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
DTYPE_MAPPING = {
|
|
"fp32": torch.float32,
|
|
"fp16": torch.float16,
|
|
"bf16": torch.bfloat16,
|
|
}
|
|
|
|
VARIANT_MAPPING = {
|
|
"fp32": None,
|
|
"fp16": "fp16",
|
|
"bf16": "bf16",
|
|
}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
|
|
transformer = None
|
|
dtype = DTYPE_MAPPING[args.dtype]
|
|
variant = VARIANT_MAPPING[args.dtype]
|
|
output_path = Path(args.output_path)
|
|
|
|
if args.save_pipeline:
|
|
assert args.transformer_ckpt_path is not None and args.vae_ckpt_path is not None
|
|
|
|
if args.transformer_ckpt_path is not None:
|
|
transformer: LTXVideoTransformer3DModel = convert_transformer(args.transformer_ckpt_path, dtype)
|
|
if not args.save_pipeline:
|
|
transformer.save_pretrained(
|
|
output_path / "transformer", safe_serialization=True, max_shard_size="5GB", variant=variant
|
|
)
|
|
|
|
if args.vae_ckpt_path is not None:
|
|
config = get_vae_config(args.version)
|
|
vae: AutoencoderKLLTXVideo = convert_vae(args.vae_ckpt_path, config, dtype)
|
|
if not args.save_pipeline:
|
|
vae.save_pretrained(output_path / "vae", safe_serialization=True, max_shard_size="5GB", variant=variant)
|
|
|
|
if args.save_pipeline:
|
|
text_encoder_id = "google/t5-v1_1-xxl"
|
|
tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH)
|
|
text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir)
|
|
|
|
if args.typecast_text_encoder:
|
|
text_encoder = text_encoder.to(dtype=dtype)
|
|
|
|
# Apparently, the conversion does not work anymore without this :shrug:
|
|
for param in text_encoder.parameters():
|
|
param.data = param.data.contiguous()
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler(
|
|
use_dynamic_shifting=True,
|
|
base_shift=0.95,
|
|
max_shift=2.05,
|
|
base_image_seq_len=1024,
|
|
max_image_seq_len=4096,
|
|
shift_terminal=0.1,
|
|
)
|
|
|
|
pipe = LTXPipeline(
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
transformer=transformer,
|
|
)
|
|
|
|
pipe.save_pretrained(args.output_path, safe_serialization=True, variant=variant, max_shard_size="5GB")
|