mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* initial commit * move modules to import struct * add dummy objects and _LazyModule * add lazy import to schedulers * clean up unused imports * lazy import on models module * lazy import for schedulers module * add lazy import to pipelines module * lazy import altdiffusion * lazy import audio diffusion * lazy import audioldm * lazy import consistency model * lazy import controlnet * lazy import dance diffusion ddim ddpm * lazy import deepfloyd * lazy import kandinksy * lazy imports * lazy import semantic diffusion * lazy imports * lazy import stable diffusion * move sd output to its own module * clean up * lazy import t2iadapter * lazy import unclip * lazy import versatile and vq diffsuion * lazy import vq diffusion * helper to fetch objects from modules * lazy import sdxl * lazy import txt2vid * lazy import stochastic karras * fix model imports * fix bug * lazy import * clean up * clean up * fixes for tests * fixes for tests * clean up * remove import of torch_utils from utils module * clean up * clean up * fix mistake import statement * dedicated modules for exporting and loading * remove testing utils from utils module * fixes from merge conflicts * Update src/diffusers/pipelines/kandinsky2_2/__init__.py * fix docs * fix alt diffusion copied from * fix check dummies * fix more docs * remove accelerate import from utils module * add type checking * make style * fix check dummies * remove torch import from xformers check * clean up error message * fixes after upstream merges * dummy objects fix * fix tests * remove unused module import --------- Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
256 lines
9.3 KiB
Python
256 lines
9.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionModelEditingPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps, slow, torch_device
|
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
@skip_mps
|
|
class StableDiffusionModelEditingPipelineFastTests(
|
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionModelEditingPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DDIMScheduler()
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A field of roses",
|
|
"generator": generator,
|
|
# Setting height and width to None to prevent OOMs on CPU.
|
|
"height": None,
|
|
"width": None,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_model_editing_default_case(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionModelEditingPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.4755, 0.5132, 0.4976, 0.3904, 0.3554, 0.4765, 0.5139, 0.5158, 0.4889])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_model_editing_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionModelEditingPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "french fries"
|
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.4992, 0.5101, 0.5004, 0.3949, 0.3604, 0.4735, 0.5216, 0.5204, 0.4913])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_model_editing_euler(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = EulerAncestralDiscreteScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
|
|
)
|
|
sd_pipe = StableDiffusionModelEditingPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.4747, 0.5372, 0.4779, 0.4982, 0.5543, 0.4816, 0.5238, 0.4904, 0.5027])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_model_editing_pndm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = PNDMScheduler()
|
|
sd_pipe = StableDiffusionModelEditingPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
# the pipeline does not expect pndm so test if it raises error.
|
|
with self.assertRaises(ValueError):
|
|
_ = sd_pipe(**inputs).images
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=5e-3)
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
super().test_attention_slicing_forward_pass(expected_max_diff=5e-3)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableDiffusionModelEditingSlowTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_inputs(self, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A field of roses",
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_model_editing_default(self):
|
|
model_ckpt = "CompVis/stable-diffusion-v1-4"
|
|
pipe = StableDiffusionModelEditingPipeline.from_pretrained(model_ckpt, safety_checker=None)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
expected_slice = np.array(
|
|
[0.6749496, 0.6386453, 0.51443267, 0.66094905, 0.61921215, 0.5491332, 0.5744417, 0.58075106, 0.5174658]
|
|
)
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-2
|
|
|
|
# make sure image changes after editing
|
|
pipe.edit_model("A pack of roses", "A pack of blue roses")
|
|
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
assert np.abs(expected_slice - image_slice).max() > 1e-1
|
|
|
|
def test_stable_diffusion_model_editing_pipeline_with_sequential_cpu_offloading(self):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
model_ckpt = "CompVis/stable-diffusion-v1-4"
|
|
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
|
|
pipe = StableDiffusionModelEditingPipeline.from_pretrained(
|
|
model_ckpt, scheduler=scheduler, safety_checker=None
|
|
)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
inputs = self.get_inputs()
|
|
_ = pipe(**inputs)
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
# make sure that less than 4.4 GB is allocated
|
|
assert mem_bytes < 4.4 * 10**9
|