1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_image_variation.py
Dhruv Nair 4d897aaff5 fix image variation slow test (#4995)
fix image variation tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-12 17:45:47 +02:00

333 lines
12 KiB
Python

# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModelWithProjection
from diffusers import (
AutoencoderKL,
DPMSolverMultistepScheduler,
PNDMScheduler,
StableDiffusionImageVariationPipeline,
UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
nightly,
numpy_cosine_similarity_distance,
print_tensor_test,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionImageVariationPipelineFastTests(
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionImageVariationPipeline
params = IMAGE_VARIATION_PARAMS
batch_params = IMAGE_VARIATION_BATCH_PARAMS
image_params = frozenset([])
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = PNDMScheduler(skip_prk_steps=True)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=32,
projection_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
image_size=32,
patch_size=4,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"image_encoder": image_encoder,
"feature_extractor": feature_extractor,
"safety_checker": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed))
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_img_variation_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionImageVariationPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.5239, 0.5723, 0.4796, 0.5049, 0.5550, 0.4685, 0.5329, 0.4891, 0.4921])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_stable_diffusion_img_variation_multiple_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionImageVariationPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["image"] = 2 * [inputs["image"]]
output = sd_pipe(**inputs)
image = output.images
image_slice = image[-1, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
expected_slice = np.array([0.6892, 0.5637, 0.5836, 0.5771, 0.6254, 0.6409, 0.5580, 0.5569, 0.5289])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class StableDiffusionImageVariationPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/input_image_vermeer.png"
)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"image": init_image,
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_stable_diffusion_img_variation_pipeline_default(self):
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", safety_checker=None
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_inputs(generator_device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.8449, 0.9079, 0.7571, 0.7873, 0.8348, 0.7010, 0.6694, 0.6873, 0.6138])
print_tensor_test(image_slice)
max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice)
assert max_diff < 1e-4
def test_stable_diffusion_img_variation_intermediate_state(self):
number_of_steps = 0
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
callback_fn.has_been_called = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([-0.7974, -0.4343, -1.087, 0.04785, -1.327, 0.855, -2.148, -0.1725, 1.439])
max_diff = numpy_cosine_similarity_distance(latents_slice.flatten(), expected_slice)
assert max_diff < 1e-3
elif step == 2:
latents = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
latents_slice = latents[0, -3:, -3:, -1]
expected_slice = np.array([0.3232, 0.004883, 0.913, -1.084, 0.6143, -1.6875, -2.463, -0.439, -0.419])
max_diff = numpy_cosine_similarity_distance(latents_slice.flatten(), expected_slice)
assert max_diff < 1e-3
callback_fn.has_been_called = False
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers",
safety_checker=None,
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
generator_device = "cpu"
inputs = self.get_inputs(generator_device, dtype=torch.float16)
pipe(**inputs, callback=callback_fn, callback_steps=1)
assert callback_fn.has_been_called
assert number_of_steps == inputs["num_inference_steps"]
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers", safety_checker=None, torch_dtype=torch.float16
)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
inputs = self.get_inputs(torch_device, dtype=torch.float16)
_ = pipe(**inputs)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.6 GB is allocated
assert mem_bytes < 2.6 * 10**9
@nightly
@require_torch_gpu
class StableDiffusionImageVariationPipelineNightlyTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
init_image = load_image(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/input_image_vermeer.png"
)
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"image": init_image,
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def test_img_variation_pndm(self):
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained("fusing/sd-image-variations-diffusers")
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/lambdalabs_variations_pndm.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3
def test_img_variation_dpm(self):
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained("fusing/sd-image-variations-diffusers")
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
image = sd_pipe(**inputs).images[0]
expected_image = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
"/stable_diffusion_imgvar/lambdalabs_variations_dpm_multi.npy"
)
max_diff = np.abs(expected_image - image).max()
assert max_diff < 1e-3