mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* create general cpu offload & execution device * Remove boiler plate * finish * kp * Correct offload more pipelines * up * Update src/diffusers/pipelines/pipeline_utils.py * make style * up
170 lines
5.6 KiB
Python
170 lines
5.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
load_image,
|
|
load_numpy,
|
|
nightly,
|
|
require_torch_gpu,
|
|
skip_mps,
|
|
torch_device,
|
|
)
|
|
|
|
from ..pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = RePaintPipeline
|
|
params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"}
|
|
required_optional_params = PipelineTesterMixin.required_optional_params - {
|
|
"latents",
|
|
"num_images_per_prompt",
|
|
"callback",
|
|
"callback_steps",
|
|
}
|
|
batch_params = IMAGE_INPAINTING_BATCH_PARAMS
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
torch.manual_seed(0)
|
|
unet = UNet2DModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
)
|
|
scheduler = RePaintScheduler()
|
|
components = {"unet": unet, "scheduler": scheduler}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
|
|
image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
|
|
mask = (image > 0).to(device=device, dtype=torch.float32)
|
|
inputs = {
|
|
"image": image,
|
|
"mask_image": mask,
|
|
"generator": generator,
|
|
"num_inference_steps": 5,
|
|
"eta": 0.0,
|
|
"jump_length": 2,
|
|
"jump_n_sample": 2,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_repaint(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = RePaintPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
@skip_mps
|
|
def test_save_load_local(self):
|
|
return super().test_save_load_local()
|
|
|
|
# RePaint can hardly be made deterministic since the scheduler is currently always
|
|
# nondeterministic
|
|
@unittest.skip("non-deterministic pipeline")
|
|
def test_inference_batch_single_identical(self):
|
|
return super().test_inference_batch_single_identical()
|
|
|
|
@skip_mps
|
|
def test_dict_tuple_outputs_equivalent(self):
|
|
return super().test_dict_tuple_outputs_equivalent()
|
|
|
|
@skip_mps
|
|
def test_save_load_optional_components(self):
|
|
return super().test_save_load_optional_components()
|
|
|
|
@skip_mps
|
|
def test_attention_slicing_forward_pass(self):
|
|
return super().test_attention_slicing_forward_pass()
|
|
|
|
|
|
@nightly
|
|
@require_torch_gpu
|
|
class RepaintPipelineNightlyTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_celebahq(self):
|
|
original_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
|
|
"repaint/celeba_hq_256.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
|
|
)
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
|
|
"repaint/celeba_hq_256_result.npy"
|
|
)
|
|
|
|
model_id = "google/ddpm-ema-celebahq-256"
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = RePaintScheduler.from_pretrained(model_id)
|
|
|
|
repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
|
|
repaint.set_progress_bar_config(disable=None)
|
|
repaint.enable_attention_slicing()
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = repaint(
|
|
original_image,
|
|
mask_image,
|
|
num_inference_steps=250,
|
|
eta=0.0,
|
|
jump_length=10,
|
|
jump_n_sample=10,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (256, 256, 3)
|
|
assert np.abs(expected_image - image).mean() < 1e-2
|