1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/test_modeling_utils.py
2022-06-02 00:25:48 +02:00

107 lines
3.2 KiB
Python
Executable File

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import tempfile
import unittest
import torch
from diffusers import GaussianDiffusion, UNetModel
global_rng = random.Random()
def floats_tensor(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
class ModelTesterMixin(unittest.TestCase):
@property
def dummy_input(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes)
time_step = torch.tensor([10])
return (noise, time_step)
def test_from_pretrained_save_pretrained(self):
model = UNetModel(dim=8, dim_mults=(1, 2), resnet_block_groups=2)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
new_model = UNetModel.from_pretrained(tmpdirname)
dummy_input = self.dummy_input
image = model(*dummy_input)
new_image = new_model(*dummy_input)
assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub(self):
model = UNetModel.from_pretrained("fusing/ddpm_dummy")
image = model(*self.dummy_input)
assert image is not None, "Make sure output is not None"
class SamplerTesterMixin(unittest.TestCase):
@property
def dummy_model(self):
return UNetModel.from_pretrained("fusing/ddpm_dummy")
def test_from_pretrained_save_pretrained(self):
sampler = GaussianDiffusion(image_size=128, timesteps=3, loss_type="l1")
with tempfile.TemporaryDirectory() as tmpdirname:
sampler.save_config(tmpdirname)
new_sampler = GaussianDiffusion.from_config(tmpdirname, return_unused=False)
model = self.dummy_model
torch.manual_seed(0)
sampled_out = sampler.sample(model, batch_size=1)
torch.manual_seed(0)
sampled_out_new = new_sampler.sample(model, batch_size=1)
assert (sampled_out - sampled_out_new).abs().sum() < 1e-5, "Samplers don't give the same output"
def test_from_pretrained_hub(self):
sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy")
model = self.dummy_model
sampled_out = sampler.sample(model, batch_size=1)
assert sampled_out is not None, "Make sure output is not None"