mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
1360 lines
56 KiB
Python
1360 lines
56 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import inspect
|
|
import json
|
|
import os
|
|
import tempfile
|
|
import traceback
|
|
import unittest
|
|
import unittest.mock as mock
|
|
import uuid
|
|
from typing import Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
import requests_mock
|
|
import torch
|
|
from accelerate.utils import compute_module_sizes
|
|
from huggingface_hub import ModelCard, delete_repo, snapshot_download
|
|
from huggingface_hub.utils import is_jinja_available
|
|
from parameterized import parameterized
|
|
from requests.exceptions import HTTPError
|
|
|
|
from diffusers.models import UNet2DConditionModel
|
|
from diffusers.models.attention_processor import (
|
|
AttnProcessor,
|
|
AttnProcessor2_0,
|
|
AttnProcessorNPU,
|
|
XFormersAttnProcessor,
|
|
)
|
|
from diffusers.training_utils import EMAModel
|
|
from diffusers.utils import (
|
|
SAFE_WEIGHTS_INDEX_NAME,
|
|
WEIGHTS_INDEX_NAME,
|
|
is_peft_available,
|
|
is_torch_npu_available,
|
|
is_xformers_available,
|
|
logging,
|
|
)
|
|
from diffusers.utils.hub_utils import _add_variant
|
|
from diffusers.utils.testing_utils import (
|
|
CaptureLogger,
|
|
get_python_version,
|
|
is_torch_compile,
|
|
require_torch_2,
|
|
require_torch_accelerator_with_training,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
run_test_in_subprocess,
|
|
torch_all_close,
|
|
torch_device,
|
|
)
|
|
|
|
from ..others.test_utils import TOKEN, USER, is_staging_test
|
|
|
|
|
|
if is_peft_available():
|
|
from peft.tuners.tuners_utils import BaseTunerLayer
|
|
|
|
|
|
def caculate_expected_num_shards(index_map_path):
|
|
with open(index_map_path) as f:
|
|
weight_map_dict = json.load(f)["weight_map"]
|
|
first_key = list(weight_map_dict.keys())[0]
|
|
weight_loc = weight_map_dict[first_key] # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
|
|
expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
|
|
return expected_num_shards
|
|
|
|
|
|
def check_if_lora_correctly_set(model) -> bool:
|
|
"""
|
|
Checks if the LoRA layers are correctly set with peft
|
|
"""
|
|
for module in model.modules():
|
|
if isinstance(module, BaseTunerLayer):
|
|
return True
|
|
return False
|
|
|
|
|
|
# Will be run via run_test_in_subprocess
|
|
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
|
|
error = None
|
|
try:
|
|
init_dict, model_class = in_queue.get(timeout=timeout)
|
|
|
|
model = model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model = torch.compile(model)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = model_class.from_pretrained(tmpdirname)
|
|
new_model.to(torch_device)
|
|
|
|
assert new_model.__class__ == model_class
|
|
except Exception:
|
|
error = f"{traceback.format_exc()}"
|
|
|
|
results = {"error": error}
|
|
out_queue.put(results, timeout=timeout)
|
|
out_queue.join()
|
|
|
|
|
|
class ModelUtilsTest(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
|
|
def test_accelerate_loading_error_message(self):
|
|
with self.assertRaises(ValueError) as error_context:
|
|
UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")
|
|
|
|
# make sure that error message states what keys are missing
|
|
assert "conv_out.bias" in str(error_context.exception)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", False),
|
|
("hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds", "unet", True),
|
|
("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, False),
|
|
("hf-internal-testing/tiny-sd-unet-with-sharded-ckpt", None, True),
|
|
]
|
|
)
|
|
def test_variant_sharded_ckpt_legacy_format_raises_warning(self, repo_id, subfolder, use_local):
|
|
def load_model(path):
|
|
kwargs = {"variant": "fp16"}
|
|
if subfolder:
|
|
kwargs["subfolder"] = subfolder
|
|
return UNet2DConditionModel.from_pretrained(path, **kwargs)
|
|
|
|
with self.assertWarns(FutureWarning) as warning:
|
|
if use_local:
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
tmpdirname = snapshot_download(repo_id=repo_id)
|
|
_ = load_model(tmpdirname)
|
|
else:
|
|
_ = load_model(repo_id)
|
|
|
|
warning_message = str(warning.warnings[0].message)
|
|
self.assertIn("This serialization format is now deprecated to standardize the serialization", warning_message)
|
|
|
|
# Local tests are already covered down below.
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", None, "fp16"),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "unet", "fp16"),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-no-variants", None, None),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-no-variants-subfolder", "unet", None),
|
|
]
|
|
)
|
|
def test_variant_sharded_ckpt_loads_from_hub(self, repo_id, subfolder, variant=None):
|
|
def load_model():
|
|
kwargs = {}
|
|
if variant:
|
|
kwargs["variant"] = variant
|
|
if subfolder:
|
|
kwargs["subfolder"] = subfolder
|
|
return UNet2DConditionModel.from_pretrained(repo_id, **kwargs)
|
|
|
|
assert load_model()
|
|
|
|
def test_cached_files_are_used_when_no_internet(self):
|
|
# A mock response for an HTTP head request to emulate server down
|
|
response_mock = mock.Mock()
|
|
response_mock.status_code = 500
|
|
response_mock.headers = {}
|
|
response_mock.raise_for_status.side_effect = HTTPError
|
|
response_mock.json.return_value = {}
|
|
|
|
# Download this model to make sure it's in the cache.
|
|
orig_model = UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
|
|
)
|
|
|
|
# Under the mock environment we get a 500 error when trying to reach the model.
|
|
with mock.patch("requests.request", return_value=response_mock):
|
|
# Download this model to make sure it's in the cache.
|
|
model = UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
|
|
)
|
|
|
|
for p1, p2 in zip(orig_model.parameters(), model.parameters()):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
assert False, "Parameters not the same!"
|
|
|
|
@unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
|
|
@unittest.skipIf(torch_device == "mps", reason="Test not supported for MPS.")
|
|
def test_one_request_upon_cached(self):
|
|
use_safetensors = False
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
with requests_mock.mock(real_http=True) as m:
|
|
UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
use_safetensors=use_safetensors,
|
|
)
|
|
|
|
download_requests = [r.method for r in m.request_history]
|
|
assert (
|
|
download_requests.count("HEAD") == 3
|
|
), "3 HEAD requests one for config, one for model, and one for shard index file."
|
|
assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"
|
|
|
|
with requests_mock.mock(real_http=True) as m:
|
|
UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
use_safetensors=use_safetensors,
|
|
)
|
|
|
|
cache_requests = [r.method for r in m.request_history]
|
|
assert (
|
|
"HEAD" == cache_requests[0] and len(cache_requests) == 2
|
|
), "We should call only `model_info` to check for commit hash and knowing if shard index is present."
|
|
|
|
def test_weight_overwrite(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
|
|
UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
in_channels=9,
|
|
)
|
|
|
|
# make sure that error message states what keys are missing
|
|
assert "Cannot load" in str(error_context.exception)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model = UNet2DConditionModel.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="unet",
|
|
cache_dir=tmpdirname,
|
|
in_channels=9,
|
|
low_cpu_mem_usage=False,
|
|
ignore_mismatched_sizes=True,
|
|
)
|
|
|
|
assert model.config.in_channels == 9
|
|
|
|
|
|
class UNetTesterMixin:
|
|
def test_forward_with_norm_groups(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["norm_num_groups"] = 16
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
|
|
class ModelTesterMixin:
|
|
main_input_name = None # overwrite in model specific tester class
|
|
base_precision = 1e-3
|
|
forward_requires_fresh_args = False
|
|
model_split_percents = [0.5, 0.7, 0.9]
|
|
uses_custom_attn_processor = False
|
|
|
|
def check_device_map_is_respected(self, model, device_map):
|
|
for param_name, param in model.named_parameters():
|
|
# Find device in device_map
|
|
while len(param_name) > 0 and param_name not in device_map:
|
|
param_name = ".".join(param_name.split(".")[:-1])
|
|
if param_name not in device_map:
|
|
raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")
|
|
|
|
param_device = device_map[param_name]
|
|
if param_device in ["cpu", "disk"]:
|
|
self.assertEqual(param.device, torch.device("meta"))
|
|
else:
|
|
self.assertEqual(param.device, torch.device(param_device))
|
|
|
|
def test_from_save_pretrained(self, expected_max_diff=5e-5):
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
if hasattr(model, "set_default_attn_processor"):
|
|
model.set_default_attn_processor()
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname)
|
|
if hasattr(new_model, "set_default_attn_processor"):
|
|
new_model.set_default_attn_processor()
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
image = model(**self.inputs_dict(0))
|
|
else:
|
|
image = model(**inputs_dict)
|
|
|
|
if isinstance(image, dict):
|
|
image = image.to_tuple()[0]
|
|
|
|
if self.forward_requires_fresh_args:
|
|
new_image = new_model(**self.inputs_dict(0))
|
|
else:
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image.to_tuple()[0]
|
|
|
|
max_diff = (image - new_image).abs().max().item()
|
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
|
|
|
|
def test_getattr_is_correct(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
# save some things to test
|
|
model.dummy_attribute = 5
|
|
model.register_to_config(test_attribute=5)
|
|
|
|
logger = logging.get_logger("diffusers.models.modeling_utils")
|
|
# 30 for warning
|
|
logger.setLevel(30)
|
|
with CaptureLogger(logger) as cap_logger:
|
|
assert hasattr(model, "dummy_attribute")
|
|
assert getattr(model, "dummy_attribute") == 5
|
|
assert model.dummy_attribute == 5
|
|
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
logger = logging.get_logger("diffusers.models.modeling_utils")
|
|
# 30 for warning
|
|
logger.setLevel(30)
|
|
with CaptureLogger(logger) as cap_logger:
|
|
assert hasattr(model, "save_pretrained")
|
|
fn = model.save_pretrained
|
|
fn_1 = getattr(model, "save_pretrained")
|
|
|
|
assert fn == fn_1
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
# warning should be thrown
|
|
with self.assertWarns(FutureWarning):
|
|
assert model.test_attribute == 5
|
|
|
|
with self.assertWarns(FutureWarning):
|
|
assert getattr(model, "test_attribute") == 5
|
|
|
|
with self.assertRaises(AttributeError) as error:
|
|
model.does_not_exist
|
|
|
|
assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "npu" or not is_torch_npu_available(),
|
|
reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
|
|
)
|
|
def test_set_torch_npu_flash_attn_processor_determinism(self):
|
|
torch.use_deterministic_algorithms(False)
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
if not hasattr(model, "set_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
model.set_default_attn_processor()
|
|
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output = model(**inputs_dict)[0]
|
|
|
|
model.enable_npu_flash_attention()
|
|
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_2 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_2 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(AttnProcessorNPU())
|
|
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_3 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_3 = model(**inputs_dict)[0]
|
|
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
assert torch.allclose(output, output_2, atol=self.base_precision)
|
|
assert torch.allclose(output, output_3, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_3, atol=self.base_precision)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_set_xformers_attn_processor_for_determinism(self):
|
|
torch.use_deterministic_algorithms(False)
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
if not hasattr(model, "set_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
if not hasattr(model, "set_default_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
model.set_default_attn_processor()
|
|
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output = model(**inputs_dict)[0]
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_2 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_2 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(XFormersAttnProcessor())
|
|
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_3 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_3 = model(**inputs_dict)[0]
|
|
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
assert torch.allclose(output, output_2, atol=self.base_precision)
|
|
assert torch.allclose(output, output_3, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_3, atol=self.base_precision)
|
|
|
|
@require_torch_gpu
|
|
def test_set_attn_processor_for_determinism(self):
|
|
if self.uses_custom_attn_processor:
|
|
return
|
|
|
|
torch.use_deterministic_algorithms(False)
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.to(torch_device)
|
|
|
|
if not hasattr(model, "set_attn_processor"):
|
|
# If not has `set_attn_processor`, skip test
|
|
return
|
|
|
|
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_1 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_1 = model(**inputs_dict)[0]
|
|
|
|
model.set_default_attn_processor()
|
|
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_2 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_2 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(AttnProcessor2_0())
|
|
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_4 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_4 = model(**inputs_dict)[0]
|
|
|
|
model.set_attn_processor(AttnProcessor())
|
|
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
output_5 = model(**self.inputs_dict(0))[0]
|
|
else:
|
|
output_5 = model(**inputs_dict)[0]
|
|
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
# make sure that outputs match
|
|
assert torch.allclose(output_2, output_1, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_4, atol=self.base_precision)
|
|
assert torch.allclose(output_2, output_5, atol=self.base_precision)
|
|
|
|
def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
if hasattr(model, "set_default_attn_processor"):
|
|
model.set_default_attn_processor()
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
|
|
if hasattr(new_model, "set_default_attn_processor"):
|
|
new_model.set_default_attn_processor()
|
|
|
|
# non-variant cannot be loaded
|
|
with self.assertRaises(OSError) as error_context:
|
|
self.model_class.from_pretrained(tmpdirname)
|
|
|
|
# make sure that error message states what keys are missing
|
|
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)
|
|
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
image = model(**self.inputs_dict(0))
|
|
else:
|
|
image = model(**inputs_dict)
|
|
if isinstance(image, dict):
|
|
image = image.to_tuple()[0]
|
|
|
|
if self.forward_requires_fresh_args:
|
|
new_image = new_model(**self.inputs_dict(0))
|
|
else:
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image.to_tuple()[0]
|
|
|
|
max_diff = (image - new_image).abs().max().item()
|
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
|
|
|
|
@is_torch_compile
|
|
@require_torch_2
|
|
@unittest.skipIf(
|
|
get_python_version == (3, 12),
|
|
reason="Torch Dynamo isn't yet supported for Python 3.12.",
|
|
)
|
|
def test_from_save_pretrained_dynamo(self):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
inputs = [init_dict, self.model_class]
|
|
run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
|
|
|
|
def test_from_save_pretrained_dtype(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
for dtype in [torch.float32, torch.float16, torch.bfloat16]:
|
|
if torch_device == "mps" and dtype == torch.bfloat16:
|
|
continue
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.to(dtype)
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
|
|
assert new_model.dtype == dtype
|
|
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
|
|
assert new_model.dtype == dtype
|
|
|
|
def test_determinism(self, expected_max_diff=1e-5):
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
first = model(**self.inputs_dict(0))
|
|
else:
|
|
first = model(**inputs_dict)
|
|
if isinstance(first, dict):
|
|
first = first.to_tuple()[0]
|
|
|
|
if self.forward_requires_fresh_args:
|
|
second = model(**self.inputs_dict(0))
|
|
else:
|
|
second = model(**inputs_dict)
|
|
if isinstance(second, dict):
|
|
second = second.to_tuple()[0]
|
|
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, expected_max_diff)
|
|
|
|
def test_output(self, expected_output_shape=None):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
self.assertIsNotNone(output)
|
|
|
|
# input & output have to have the same shape
|
|
input_tensor = inputs_dict[self.main_input_name]
|
|
|
|
if expected_output_shape is None:
|
|
expected_shape = input_tensor.shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
else:
|
|
self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_from_pretrained(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# test if the model can be loaded from the config
|
|
# and has all the expected shape
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
new_model = self.model_class.from_pretrained(tmpdirname)
|
|
new_model.to(torch_device)
|
|
new_model.eval()
|
|
|
|
# check if all parameters shape are the same
|
|
for param_name in model.state_dict().keys():
|
|
param_1 = model.state_dict()[param_name]
|
|
param_2 = new_model.state_dict()[param_name]
|
|
self.assertEqual(param_1.shape, param_2.shape)
|
|
|
|
with torch.no_grad():
|
|
output_1 = model(**inputs_dict)
|
|
|
|
if isinstance(output_1, dict):
|
|
output_1 = output_1.to_tuple()[0]
|
|
|
|
output_2 = new_model(**inputs_dict)
|
|
|
|
if isinstance(output_2, dict):
|
|
output_2 = output_2.to_tuple()[0]
|
|
|
|
self.assertEqual(output_1.shape, output_2.shape)
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
input_tensor = inputs_dict[self.main_input_name]
|
|
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_ema_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
ema_model = EMAModel(model.parameters())
|
|
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
input_tensor = inputs_dict[self.main_input_name]
|
|
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
ema_model.step(model.parameters())
|
|
|
|
def test_outputs_equivalence(self):
|
|
def set_nan_tensor_to_zero(t):
|
|
# Temporary fallback until `aten::_index_put_impl_` is implemented in mps
|
|
# Track progress in https://github.com/pytorch/pytorch/issues/77764
|
|
device = t.device
|
|
if device.type == "mps":
|
|
t = t.to("cpu")
|
|
t[t != t] = 0
|
|
return t.to(device)
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (List, Tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, Dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
|
),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
if self.forward_requires_fresh_args:
|
|
model = self.model_class(**self.init_dict)
|
|
else:
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
if self.forward_requires_fresh_args:
|
|
outputs_dict = model(**self.inputs_dict(0))
|
|
outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
|
|
else:
|
|
outputs_dict = model(**inputs_dict)
|
|
outputs_tuple = model(**inputs_dict, return_dict=False)
|
|
|
|
recursive_check(outputs_tuple, outputs_dict)
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_enable_disable_gradient_checkpointing(self):
|
|
if not self.model_class._supports_gradient_checkpointing:
|
|
return # Skip test if model does not support gradient checkpointing
|
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
# at init model should have gradient checkpointing disabled
|
|
model = self.model_class(**init_dict)
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
# check enable works
|
|
model.enable_gradient_checkpointing()
|
|
self.assertTrue(model.is_gradient_checkpointing)
|
|
|
|
# check disable works
|
|
model.disable_gradient_checkpointing()
|
|
self.assertFalse(model.is_gradient_checkpointing)
|
|
|
|
@require_torch_accelerator_with_training
|
|
def test_effective_gradient_checkpointing(self, loss_tolerance=1e-5, param_grad_tol=5e-5):
|
|
if not self.model_class._supports_gradient_checkpointing:
|
|
return # Skip test if model does not support gradient checkpointing
|
|
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
inputs_dict_copy = copy.deepcopy(inputs_dict)
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
assert not model.is_gradient_checkpointing and model.training
|
|
|
|
out = model(**inputs_dict).sample
|
|
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
|
|
# we won't calculate the loss and rather backprop on out.sum()
|
|
model.zero_grad()
|
|
|
|
labels = torch.randn_like(out)
|
|
loss = (out - labels).mean()
|
|
loss.backward()
|
|
|
|
# re-instantiate the model now enabling gradient checkpointing
|
|
torch.manual_seed(0)
|
|
model_2 = self.model_class(**init_dict)
|
|
# clone model
|
|
model_2.load_state_dict(model.state_dict())
|
|
model_2.to(torch_device)
|
|
model_2.enable_gradient_checkpointing()
|
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training
|
|
|
|
out_2 = model_2(**inputs_dict_copy).sample
|
|
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
|
|
# we won't calculate the loss and rather backprop on out.sum()
|
|
model_2.zero_grad()
|
|
loss_2 = (out_2 - labels).mean()
|
|
loss_2.backward()
|
|
|
|
# compare the output and parameters gradients
|
|
self.assertTrue((loss - loss_2).abs() < loss_tolerance)
|
|
named_params = dict(model.named_parameters())
|
|
named_params_2 = dict(model_2.named_parameters())
|
|
|
|
for name, param in named_params.items():
|
|
if "post_quant_conv" in name:
|
|
continue
|
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=param_grad_tol))
|
|
|
|
@unittest.skipIf(torch_device == "mps", "This test is not supported for MPS devices.")
|
|
def test_gradient_checkpointing_is_applied(
|
|
self, expected_set=None, attention_head_dim=None, num_attention_heads=None, block_out_channels=None
|
|
):
|
|
if not self.model_class._supports_gradient_checkpointing:
|
|
return # Skip test if model does not support gradient checkpointing
|
|
if self.model_class.__name__ in [
|
|
"UNetSpatioTemporalConditionModel",
|
|
"AutoencoderKLTemporalDecoder",
|
|
]:
|
|
return
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
if attention_head_dim is not None:
|
|
init_dict["attention_head_dim"] = attention_head_dim
|
|
if num_attention_heads is not None:
|
|
init_dict["num_attention_heads"] = num_attention_heads
|
|
if block_out_channels is not None:
|
|
init_dict["block_out_channels"] = block_out_channels
|
|
|
|
model_class_copy = copy.copy(self.model_class)
|
|
|
|
modules_with_gc_enabled = {}
|
|
|
|
# now monkey patch the following function:
|
|
# def _set_gradient_checkpointing(self, module, value=False):
|
|
# if hasattr(module, "gradient_checkpointing"):
|
|
# module.gradient_checkpointing = value
|
|
|
|
def _set_gradient_checkpointing_new(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
modules_with_gc_enabled[module.__class__.__name__] = True
|
|
|
|
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new
|
|
|
|
model = model_class_copy(**init_dict)
|
|
model.enable_gradient_checkpointing()
|
|
|
|
assert set(modules_with_gc_enabled.keys()) == expected_set
|
|
assert all(modules_with_gc_enabled.values()), "All modules should be enabled"
|
|
|
|
def test_deprecated_kwargs(self):
|
|
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
|
|
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0
|
|
|
|
if has_kwarg_in_model_class and not has_deprecated_kwarg:
|
|
raise ValueError(
|
|
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
|
|
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
|
|
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
|
|
" [<deprecated_argument>]`"
|
|
)
|
|
|
|
if not has_kwarg_in_model_class and has_deprecated_kwarg:
|
|
raise ValueError(
|
|
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
|
|
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
|
|
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
|
|
" from `_deprecated_kwargs = [<deprecated_argument>]`"
|
|
)
|
|
|
|
@parameterized.expand([True, False])
|
|
@torch.no_grad()
|
|
@unittest.skipIf(not is_peft_available(), "Only with PEFT")
|
|
def test_save_load_lora_adapter(self, use_dora=False):
|
|
import safetensors
|
|
from peft import LoraConfig
|
|
from peft.utils import get_peft_model_state_dict
|
|
|
|
from diffusers.loaders.peft import PeftAdapterMixin
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
if not issubclass(model.__class__, PeftAdapterMixin):
|
|
return
|
|
|
|
torch.manual_seed(0)
|
|
output_no_lora = model(**inputs_dict, return_dict=False)[0]
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=4,
|
|
lora_alpha=4,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=use_dora,
|
|
)
|
|
model.add_adapter(denoiser_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
torch.manual_seed(0)
|
|
outputs_with_lora = model(**inputs_dict, return_dict=False)[0]
|
|
|
|
self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora, atol=1e-4, rtol=1e-4))
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
model.save_lora_adapter(tmpdir)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
|
|
|
state_dict_loaded = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
|
|
model.unload_lora()
|
|
self.assertFalse(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
model.load_lora_adapter(tmpdir, prefix=None, use_safetensors=True)
|
|
state_dict_retrieved = get_peft_model_state_dict(model, adapter_name="default_0")
|
|
|
|
for k in state_dict_loaded:
|
|
loaded_v = state_dict_loaded[k]
|
|
retrieved_v = state_dict_retrieved[k].to(loaded_v.device)
|
|
self.assertTrue(torch.allclose(loaded_v, retrieved_v))
|
|
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
torch.manual_seed(0)
|
|
outputs_with_lora_2 = model(**inputs_dict, return_dict=False)[0]
|
|
|
|
self.assertFalse(torch.allclose(output_no_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
|
|
self.assertTrue(torch.allclose(outputs_with_lora, outputs_with_lora_2, atol=1e-4, rtol=1e-4))
|
|
|
|
@unittest.skipIf(not is_peft_available(), "Only with PEFT")
|
|
def test_wrong_adapter_name_raises_error(self):
|
|
from peft import LoraConfig
|
|
|
|
from diffusers.loaders.peft import PeftAdapterMixin
|
|
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
if not issubclass(model.__class__, PeftAdapterMixin):
|
|
return
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=4,
|
|
lora_alpha=4,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=False,
|
|
)
|
|
model.add_adapter(denoiser_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(model), "LoRA layers not set correctly")
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
wrong_name = "foo"
|
|
with self.assertRaises(ValueError) as err_context:
|
|
model.save_lora_adapter(tmpdir, adapter_name=wrong_name)
|
|
|
|
self.assertTrue(f"Adapter name {wrong_name} not found in the model." in str(err_context.exception))
|
|
|
|
@require_torch_gpu
|
|
def test_cpu_offload(self):
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
if model._no_split_modules is None:
|
|
return
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
# We test several splits of sizes to make sure it works.
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
for max_size in max_gpu_sizes:
|
|
max_memory = {0: max_size, "cpu": model_size * 2}
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
# Making sure part of the model will actually end up offloaded
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_gpu
|
|
def test_disk_offload_without_safetensors(self):
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
if model._no_split_modules is None:
|
|
return
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
|
|
|
|
with self.assertRaises(ValueError):
|
|
max_size = int(self.model_split_percents[0] * model_size)
|
|
max_memory = {0: max_size, "cpu": max_size}
|
|
# This errors out because it's missing an offload folder
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
|
|
max_size = int(self.model_split_percents[0] * model_size)
|
|
max_memory = {0: max_size, "cpu": max_size}
|
|
new_model = self.model_class.from_pretrained(
|
|
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
|
|
)
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_gpu
|
|
def test_disk_offload_with_safetensors(self):
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
if model._no_split_modules is None:
|
|
return
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
max_size = int(self.model_split_percents[0] * model_size)
|
|
max_memory = {0: max_size, "cpu": max_size}
|
|
new_model = self.model_class.from_pretrained(
|
|
tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
|
|
)
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_multi_gpu
|
|
def test_model_parallelism(self):
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
if model._no_split_modules is None:
|
|
return
|
|
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
# We test several splits of sizes to make sure it works.
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir)
|
|
|
|
for max_size in max_gpu_sizes:
|
|
max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
|
|
# Making sure part of the model will actually end up offloaded
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
|
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
|
|
|
|
torch.manual_seed(0)
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_gpu
|
|
def test_sharded_checkpoints(self):
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
new_model = self.model_class.from_pretrained(tmp_dir).eval()
|
|
new_model = new_model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
if "generator" in inputs_dict:
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_gpu
|
|
def test_sharded_checkpoints_with_variant(self):
|
|
torch.manual_seed(0)
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
model = model.to(torch_device)
|
|
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
variant = "fp16"
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# It doesn't matter if the actual model is in fp16 or not. Just adding the variant and
|
|
# testing if loading works with the variant when the checkpoint is sharded should be
|
|
# enough.
|
|
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB", variant=variant)
|
|
|
|
index_filename = _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_filename)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_filename))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
new_model = self.model_class.from_pretrained(tmp_dir, variant=variant).eval()
|
|
new_model = new_model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
if "generator" in inputs_dict:
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
new_output = new_model(**inputs_dict)
|
|
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
@require_torch_gpu
|
|
def test_sharded_checkpoints_device_map(self):
|
|
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
if model._no_split_modules is None:
|
|
return
|
|
model = model.to(torch_device)
|
|
|
|
torch.manual_seed(0)
|
|
base_output = model(**inputs_dict)
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto")
|
|
|
|
torch.manual_seed(0)
|
|
if "generator" in inputs_dict:
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
new_output = new_model(**inputs_dict)
|
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
|
|
|
|
# This test is okay without a GPU because we're not running any execution. We're just serializing
|
|
# and check if the resultant files are following an expected format.
|
|
def test_variant_sharded_ckpt_right_format(self):
|
|
for use_safe in [True, False]:
|
|
extension = ".safetensors" if use_safe else ".bin"
|
|
config, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**config).eval()
|
|
|
|
model_size = compute_module_sizes(model)[""]
|
|
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
|
|
variant = "fp16"
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.cpu().save_pretrained(
|
|
tmp_dir, variant=variant, max_shard_size=f"{max_shard_size}KB", safe_serialization=use_safe
|
|
)
|
|
index_variant = _add_variant(SAFE_WEIGHTS_INDEX_NAME if use_safe else WEIGHTS_INDEX_NAME, variant)
|
|
self.assertTrue(os.path.exists(os.path.join(tmp_dir, index_variant)))
|
|
|
|
# Now check if the right number of shards exists. First, let's get the number of shards.
|
|
# Since this number can be dependent on the model being tested, it's important that we calculate it
|
|
# instead of hardcoding it.
|
|
expected_num_shards = caculate_expected_num_shards(os.path.join(tmp_dir, index_variant))
|
|
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(extension)])
|
|
self.assertTrue(actual_num_shards == expected_num_shards)
|
|
|
|
# Check if the variant is present as a substring in the checkpoints.
|
|
shard_files = [
|
|
file
|
|
for file in os.listdir(tmp_dir)
|
|
if file.endswith(extension) or ("index" in file and "json" in file)
|
|
]
|
|
assert all(variant in f for f in shard_files)
|
|
|
|
# Check if the sharded checkpoints were serialized in the right format.
|
|
shard_files = [file for file in os.listdir(tmp_dir) if file.endswith(extension)]
|
|
# Example: diffusion_pytorch_model.fp16-00001-of-00002.safetensors
|
|
assert all(f.split(".")[1].split("-")[0] == variant for f in shard_files)
|
|
|
|
|
|
@is_staging_test
|
|
class ModelPushToHubTester(unittest.TestCase):
|
|
identifier = uuid.uuid4()
|
|
repo_id = f"test-model-{identifier}"
|
|
org_repo_id = f"valid_org/{repo_id}-org"
|
|
|
|
def test_push_to_hub(self):
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
model.push_to_hub(self.repo_id, token=TOKEN)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(token=TOKEN, repo_id=self.repo_id)
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(self.repo_id, token=TOKEN)
|
|
|
|
def test_push_to_hub_in_organization(self):
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
model.push_to_hub(self.org_repo_id, token=TOKEN)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(token=TOKEN, repo_id=self.org_repo_id)
|
|
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)
|
|
|
|
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
|
|
for p1, p2 in zip(model.parameters(), new_model.parameters()):
|
|
self.assertTrue(torch.equal(p1, p2))
|
|
|
|
# Reset repo
|
|
delete_repo(self.org_repo_id, token=TOKEN)
|
|
|
|
@unittest.skipIf(
|
|
not is_jinja_available(),
|
|
reason="Model card tests cannot be performed without Jinja installed.",
|
|
)
|
|
def test_push_to_hub_library_name(self):
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
model.push_to_hub(self.repo_id, token=TOKEN)
|
|
|
|
model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
|
|
assert model_card.library_name == "diffusers"
|
|
|
|
# Reset repo
|
|
delete_repo(self.repo_id, token=TOKEN)
|