1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs
Anton Obukhov b3d10d6d65 [Pipeline] Marigold depth and normals estimation (#7847)
* implement marigold depth and normals pipelines in diffusers core

* remove bibtex

* remove deprecations

* remove save_memory argument

* remove validate_vae

* remove config output

* remove batch_size autodetection

* remove presets logic
move default denoising_steps and processing_resolution into the model config
make default ensemble_size 1

* remove no_grad

* add fp16 to the example usage

* implement is_matplotlib_available
use is_matplotlib_available, is_scipy_available for conditional imports in the marigold depth pipeline

* move colormap, visualize_depth, and visualize_normals into export_utils.py

* make the denoising loop more lucid
fix the outputs to always be 4d tensors or lists of pil images
support a 4d input_image case
attempt to support model_cpu_offload_seq
move check_inputs into a separate function
change default batch_size to 1, remove any logic to make it bigger implicitly

* style

* rename denoising_steps into num_inference_steps

* rename input_image into image

* rename input_latent into latents

* remove decode_image
change decode_prediction to use the AutoencoderKL.decode method

* move clean_latent outside of progress_bar

* refactor marigold-reusable image processing bits into MarigoldImageProcessor class

* clean up the usage example docstring

* make ensemble functions members of the pipelines

* add early checks in check_inputs
rename E into ensemble_size in depth ensembling

* fix vae_scale_factor computation

* better compatibility with torch.compile
better variable naming

* move export_depth_to_png to export_utils

* remove encode_prediction

* improve visualize_depth and visualize_normals to accept multi-dimensional data and lists
remove visualization functions from the pipelines
move exporting depth as 16-bit PNGs functionality from the depth pipeline
update example docstrings

* do not shortcut vae.config variables

* change all asserts to raise ValueError

* rename output_prediction_type to output_type

* better variable names
clean up variable deletion code

* better variable names

* pass desc and leave kwargs into the diffusers progress_bar
implement nested progress bar for images and steps loops

* implement scale_invariant and shift_invariant flags in the ensemble_depth function
add scale_invariant and shift_invariant flags readout from the model config
further refactor ensemble_depth
support ensembling without alignment
add ensemble_depth docstring

* fix generator device placement checks

* move encode_empty_text body into the pipeline call

* minor empty text encoding simplifications

* adjust pipelines' class docstrings to explain the added construction arguments

* improve the scipy failure condition
add comments
improve docstrings
change the default use_full_z_range to True

* make input image values range check configurable in the preprocessor
refactor load_image_canonical in preprocessor to reject unknown types and return the image in the expected 4D format of tensor and on right device
support a list of everything as inputs to the pipeline, change type to PipelineImageInput
implement a check that all input list elements have the same dimensions
improve docstrings of pipeline outputs
remove check_input pipeline argument

* remove forgotten print

* add prediction_type model config

* add uncertainty visualization into export utils
fix NaN values in normals uncertainties

* change default of output_uncertainty to False
better handle the case of an attempt to export or visualize none

* fix `output_uncertainty=False`

* remove kwargs
fix check_inputs according to the new inputs of the pipeline

* rename prepare_latent into prepare_latents as in other pipelines
annotate prepare_latents in normals pipeline with "Copied from"
annotate encode_image in normals pipeline with "Copied from"

* move nested-capable `progress_bar` method into the pipelines
revert the original `progress_bar` method in pipeline_utils

* minor message improvement

* fix cpu offloading

* move colormap, visualize_depth, export_depth_to_16bit_png, visualize_normals, visualize_uncertainty to marigold_image_processing.py
update example docstrings

* fix missing comma

* change torch.FloatTensor to torch.Tensor

* fix importing of MarigoldImageProcessor

* fix vae offloading
fix batched image encoding
remove separate encode_image function and use vae.encode instead

* implement marigold's intial tests
relax generator checks in line with other pipelines
implement return_dict __call__ argument in line with other pipelines

* fix num_images computation

* remove MarigoldImageProcessor and outputs from import structure
update tests

* update docstrings

* update init

* update

* style

* fix

* fix

* up

* up

* up

* add simple test

* up

* update expected np input/output to be channel last

* move expand_tensor_or_array into the MarigoldImageProcessor

* rewrite tests to follow conventions - hardcoded slices instead of image artifacts
write more smoke tests

* add basic docs.

* add anton's contribution statement

* remove todos.

* fix assertion values for marigold depth slow tests

* fix assertion values for depth normals.

* remove print

* support AutoencoderTiny in the pipelines

* update documentation page
add Available Pipelines section
add Available Checkpoints section
add warning about num_inference_steps

* fix missing import in docstring
fix wrong value in visualize_depth docstring

* [doc] add marigold to pipelines overview

* [doc] add section "usage examples"

* fix an issue with latents check in the pipelines

* add "Frame-by-frame Video Processing with Consistency" section

* grammarly

* replace tables with images with css-styled images (blindly)

* style

* print

* fix the assertions.

* take from the github runner.

* take the slices from action artifacts

* style.

* update with the slices from the runner.

* remove unnecessary code blocks.

* Revert "[doc] add marigold to pipelines overview"

This reverts commit a505165150afd8dab23c474d1a054ea505a56a5f.

* remove invitation for new modalities

* split out marigold usage examples

* doc cleanup

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2024-05-27 17:21:49 +05:30
..

Generating the documentation

To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository:

pip install -e ".[docs]"

Then you need to install our open source documentation builder tool:

pip install git+https://github.com/huggingface/doc-builder

NOTE

You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to commit the built documentation.


Previewing the documentation

To preview the docs, first install the watchdog module with:

pip install watchdog

Then run the following command:

doc-builder preview {package_name} {path_to_docs}

For example:

doc-builder preview diffusers docs/source/en

The docs will be viewable at http://localhost:3000. You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.


NOTE

The preview command only works with existing doc files. When you add a completely new file, you need to update _toctree.yml & restart preview command (ctrl-c to stop it & call doc-builder preview ... again).


Adding a new element to the navigation bar

Accepted files are Markdown (.md).

Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the _toctree.yml file.

Renaming section headers and moving sections

It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.

Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.

So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:

Sections that were moved:

[ <a href="#section-b">Section A</a><a id="section-a"></a> ]

and of course, if you moved it to another file, then:

Sections that were moved:

[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]

Use the relative style to link to the new file so that the versioned docs continue to work.

For an example of a rich moved section set please see the very end of the transformers Trainer doc.

Writing Documentation - Specification

The huggingface/diffusers documentation follows the Google documentation style for docstrings, although we can write them directly in Markdown.

Adding a new tutorial

Adding a new tutorial or section is done in two steps:

  • Add a new Markdown (.md) file under docs/source/<languageCode>.
  • Link that file in docs/source/<languageCode>/_toctree.yml on the correct toc-tree.

Make sure to put your new file under the proper section. It's unlikely to go in the first section (Get Started), so depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four.

Adding a new pipeline/scheduler

When adding a new pipeline:

  • Create a file xxx.md under docs/source/<languageCode>/api/pipelines (don't hesitate to copy an existing file as template).
  • Link that file in (Diffusers Summary) section in docs/source/api/pipelines/overview.md, along with the link to the paper, and a colab notebook (if available).
  • Write a short overview of the diffusion model:
    • Overview with paper & authors
    • Paper abstract
    • Tips and tricks and how to use it best
    • Possible an end-to-end example of how to use it
  • Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows:
[[autodoc]] XXXPipeline
    - all
	- __call__

This will include every public method of the pipeline that is documented, as well as the __call__ method that is not documented by default. If you just want to add additional methods that are not documented, you can put the list of all methods to add in a list that contains all.

[[autodoc]] XXXPipeline
    - all
	- __call__
	- enable_attention_slicing
	- disable_attention_slicing
    - enable_xformers_memory_efficient_attention
    - disable_xformers_memory_efficient_attention

You can follow the same process to create a new scheduler under the docs/source/<languageCode>/api/schedulers folder.

Writing source documentation

Values that should be put in code should either be surrounded by backticks: `like so`. Note that argument names and objects like True, None, or any strings should usually be put in code.

When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: [`XXXClass`] or [`function`]. This requires the class or function to be in the main package.

If you want to create a link to some internal class or function, you need to provide its path. For instance: [`pipelines.ImagePipelineOutput`]. This will be converted into a link with pipelines.ImagePipelineOutput in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: [`~pipelines.ImagePipelineOutput`] will generate a link with ImagePipelineOutput in the description.

The same works for methods so you can either use [`XXXClass.method`] or [`~XXXClass.method`].

Defining arguments in a method

Arguments should be defined with the Args: (or Arguments: or Parameters:) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its description:

    Args:
        n_layers (`int`): The number of layers of the model.

If the description is too long to fit in one line, another indentation is necessary before writing the description after the argument.

Here's an example showcasing everything so far:

    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and
            [`~PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)

For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature:

def my_function(x: str=None, a: float=3.14):

then its documentation should look like this:

    Args:
        x (`str`, *optional*):
            This argument controls ...
        a (`float`, *optional*, defaults to `3.14`):
            This argument is used to ...

Note that we always omit the "defaults to `None`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it on several lines. You can however write as many lines as you want in the indented description (see the example above with input_ids).

Writing a multi-line code block

Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:

```
# first line of code
# second line
# etc
```

Writing a return block

The return block should be introduced with the Returns: prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return.

Here's an example of a single value return:

    Returns:
        `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.

Here's an example of a tuple return, comprising several objects:

    Returns:
        `tuple(torch.Tensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
        - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.Tensor` of shape `(1,)` --
          Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        - **prediction_scores** (`torch.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
          Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

Adding an image

Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted dataset like the ones hosted on hf-internal-testing in which to place these files and reference them by URL. We recommend putting them in the following dataset: huggingface/documentation-images. If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images to this dataset.

Styling the docstring

We have an automatic script running with the make style command that will make sure that:

  • the docstrings fully take advantage of the line width
  • all code examples are formatted using black, like the code of the Transformers library

This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running make style, so you can revert the changes done by that script easily.