mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* move audioldm tests to nightly * move kandinsky im2img ddpm test to nightly * move flax dpm test to nightly * move diffedit dpm test to nightly * move fp16 slow tests to nightly
419 lines
14 KiB
Python
419 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMInverseScheduler,
|
|
DDIMScheduler,
|
|
DPMSolverMultistepInverseScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
StableDiffusionDiffEditPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils import load_image, nightly, slow
|
|
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
|
|
|
|
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
|
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusionDiffEditPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = StableDiffusionDiffEditPipeline
|
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
|
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
|
|
image_params = frozenset(
|
|
[]
|
|
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
|
|
image_latents_params = frozenset([])
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
# SD2-specific config below
|
|
attention_head_dim=(2, 4),
|
|
use_linear_projection=True,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
inverse_scheduler = DDIMInverseScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_zero=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
sample_size=128,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
# SD2-specific config below
|
|
hidden_act="gelu",
|
|
projection_dim=512,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"inverse_scheduler": inverse_scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
}
|
|
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
mask = floats_tensor((1, 16, 16), rng=random.Random(seed)).to(device)
|
|
latents = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(seed)).to(device)
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "a dog and a newt",
|
|
"mask_image": mask,
|
|
"image_latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"inpaint_strength": 1.0,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "numpy",
|
|
}
|
|
|
|
return inputs
|
|
|
|
def get_dummy_mask_inputs(self, device, seed=0):
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
|
image = image.cpu().permute(0, 2, 3, 1)[0]
|
|
image = Image.fromarray(np.uint8(image)).convert("RGB")
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"image": image,
|
|
"source_prompt": "a cat and a frog",
|
|
"target_prompt": "a dog and a newt",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"num_maps_per_mask": 2,
|
|
"mask_encode_strength": 1.0,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "numpy",
|
|
}
|
|
|
|
return inputs
|
|
|
|
def get_dummy_inversion_inputs(self, device, seed=0):
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
|
image = image.cpu().permute(0, 2, 3, 1)[0]
|
|
image = Image.fromarray(np.uint8(image)).convert("RGB")
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"image": image,
|
|
"prompt": "a cat and a frog",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"inpaint_strength": 1.0,
|
|
"guidance_scale": 6.0,
|
|
"decode_latents": True,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_save_load_optional_components(self):
|
|
if not hasattr(self.pipeline_class, "_optional_components"):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# set all optional components to None and update pipeline config accordingly
|
|
for optional_component in pipe._optional_components:
|
|
setattr(pipe, optional_component, None)
|
|
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components})
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = pipe(**inputs)[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
for optional_component in pipe._optional_components:
|
|
self.assertTrue(
|
|
getattr(pipe_loaded, optional_component) is None,
|
|
f"`{optional_component}` did not stay set to None after loading.",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_loaded = pipe_loaded(**inputs)[0]
|
|
|
|
max_diff = np.abs(output - output_loaded).max()
|
|
self.assertLess(max_diff, 1e-4)
|
|
|
|
def test_mask(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_mask_inputs(device)
|
|
mask = pipe.generate_mask(**inputs)
|
|
mask_slice = mask[0, -3:, -3:]
|
|
|
|
self.assertEqual(mask.shape, (1, 16, 16))
|
|
expected_slice = np.array([0] * 9)
|
|
max_diff = np.abs(mask_slice.flatten() - expected_slice).max()
|
|
self.assertLessEqual(max_diff, 1e-3)
|
|
self.assertEqual(mask[0, -3, -4], 0)
|
|
|
|
def test_inversion(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inversion_inputs(device)
|
|
image = pipe.invert(**inputs).images
|
|
image_slice = image[0, -1, -3:, -3:]
|
|
|
|
self.assertEqual(image.shape, (2, 32, 32, 3))
|
|
expected_slice = np.array(
|
|
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5105, 0.5015, 0.4407, 0.4799],
|
|
)
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
|
self.assertLessEqual(max_diff, 1e-3)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=5e-3)
|
|
|
|
def test_inversion_dpm(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"}
|
|
components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args)
|
|
components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args)
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inversion_inputs(device)
|
|
image = pipe.invert(**inputs).images
|
|
image_slice = image[0, -1, -3:, -3:]
|
|
|
|
self.assertEqual(image.shape, (2, 32, 32, 3))
|
|
expected_slice = np.array(
|
|
[0.5305, 0.4673, 0.5314, 0.5308, 0.4886, 0.5279, 0.5142, 0.4724, 0.4892],
|
|
)
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
|
self.assertLessEqual(max_diff, 1e-3)
|
|
|
|
|
|
@require_torch_gpu
|
|
@slow
|
|
class StableDiffusionDiffEditPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
raw_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png"
|
|
)
|
|
|
|
raw_image = raw_image.convert("RGB").resize((768, 768))
|
|
|
|
cls.raw_image = raw_image
|
|
|
|
def test_stable_diffusion_diffedit_full(self):
|
|
generator = torch.manual_seed(0)
|
|
|
|
pipe = StableDiffusionDiffEditPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
source_prompt = "a bowl of fruit"
|
|
target_prompt = "a bowl of pears"
|
|
|
|
mask_image = pipe.generate_mask(
|
|
image=self.raw_image,
|
|
source_prompt=source_prompt,
|
|
target_prompt=target_prompt,
|
|
generator=generator,
|
|
)
|
|
|
|
inv_latents = pipe.invert(
|
|
prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator
|
|
).latents
|
|
|
|
image = pipe(
|
|
prompt=target_prompt,
|
|
mask_image=mask_image,
|
|
image_latents=inv_latents,
|
|
generator=generator,
|
|
negative_prompt=source_prompt,
|
|
inpaint_strength=0.7,
|
|
output_type="numpy",
|
|
).images[0]
|
|
|
|
expected_image = (
|
|
np.array(
|
|
load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/diffedit/pears.png"
|
|
).resize((768, 768))
|
|
)
|
|
/ 255
|
|
)
|
|
assert np.abs((expected_image - image).max()) < 5e-1
|
|
|
|
|
|
@nightly
|
|
@require_torch_gpu
|
|
class StableDiffusionDiffEditPipelineNightlyTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
raw_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png"
|
|
)
|
|
|
|
raw_image = raw_image.convert("RGB").resize((768, 768))
|
|
|
|
cls.raw_image = raw_image
|
|
|
|
def test_stable_diffusion_diffedit_dpm(self):
|
|
generator = torch.manual_seed(0)
|
|
|
|
pipe = StableDiffusionDiffEditPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
source_prompt = "a bowl of fruit"
|
|
target_prompt = "a bowl of pears"
|
|
|
|
mask_image = pipe.generate_mask(
|
|
image=self.raw_image,
|
|
source_prompt=source_prompt,
|
|
target_prompt=target_prompt,
|
|
generator=generator,
|
|
)
|
|
|
|
inv_latents = pipe.invert(
|
|
prompt=source_prompt,
|
|
image=self.raw_image,
|
|
inpaint_strength=0.7,
|
|
generator=generator,
|
|
num_inference_steps=25,
|
|
).latents
|
|
|
|
image = pipe(
|
|
prompt=target_prompt,
|
|
mask_image=mask_image,
|
|
image_latents=inv_latents,
|
|
generator=generator,
|
|
negative_prompt=source_prompt,
|
|
inpaint_strength=0.7,
|
|
num_inference_steps=25,
|
|
output_type="numpy",
|
|
).images[0]
|
|
|
|
expected_image = (
|
|
np.array(
|
|
load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/diffedit/pears.png"
|
|
).resize((768, 768))
|
|
)
|
|
/ 255
|
|
)
|
|
assert np.abs((expected_image - image).max()) < 5e-1
|