1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/examples/inference

Inference Examples

Installing the dependencies

Before running the scipts, make sure to install the library's dependencies:

pip install diffusers transformers ftfy

Image-to-Image text-guided generation with Stable Diffusion

The image_to_image.py script implements StableDiffusionImg2ImgPipeline. It lets you pass a text prompt and an initial image to condition the generation of new images. This example also showcases how you can write custom diffusion pipelines using diffusers!

How to use it

from torch import autocast
import requests
from PIL import Image
from io import BytesIO

from image_to_image import StableDiffusionImg2ImgPipeline, preprocess

# load the pipeline
device = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    revision="fp16", 
    torch_dtype=torch.float16,
    use_auth_token=True
).to(device)

# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))
init_image = preprocess(init_image)

prompt = "A fantasy landscape, trending on artstation"

with autocast("cuda"):
    images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5)["sample"]

images[0].save("fantasy_landscape.png")

You can also run this example on colab Open In Colab