mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* add scaffold - copied convert_controlnet_to_diffusers.py from convert_original_stable_diffusion_to_diffusers.py * Add support to load ControlNet (WIP) - this makes Missking Key error on ControlNetModel * Update to convert ControlNet without error msg - init impl for StableDiffusionControlNetPipeline - init impl for ControlNetModel * cleanup of commented out * split create_controlnet_diffusers_config() from create_unet_diffusers_config() - add config: hint_channels * Add input_hint_block, input_zero_conv and middle_block_out - this makes missing key error on loading model * add unet_2d_blocks_controlnet.py - copied from unet_2d_blocks.py as impl CrossAttnDownBlock2D,DownBlock2D - this makes missing key error on loading model * Add loading for input_hint_block, zero_convs and middle_block_out - this makes no error message on model loading * Copy from UNet2DConditionalModel except __init__ * Add ultra primitive test for ControlNetModel inference * Support ControlNetModel inference - without exceptions * copy forward() from UNet2DConditionModel * Impl ControlledUNet2DConditionModel inference - test_controlled_unet_inference passed * Frozen weight & biases for training * Minimized version of ControlNet/ControlledUnet - test_modules_controllnet.py passed * make style * Add support model loading for minimized ver * Remove all previous version files * from_pretrained and inference test passed * copied from pipeline_stable_diffusion.py except `__init__()` * Impl pipeline, pixel match test (almost) passed. * make style * make fix-copies * Fix to add import ControlNet blocks for `make fix-copies` * Remove einops dependency * Support np.ndarray, PIL.Image for controlnet_hint * set default config file as lllyasviel's * Add support grayscale (hw) numpy array * Add and update docstrings * add control_net.mdx * add control_net.mdx to toctree * Update copyright year * Fix to add PIL.Image RGB->BGR conversion - thanks @Mystfit * make fix-copies * add basic fast test for controlnet * add slow test for controlnet/unet * Ignore down/up_block len check on ControlNet * add a copy from test_stable_diffusion.py * Accept controlnet_hint is None * merge pipeline_stable_diffusion.py diff * Update class name to SDControlNetPipeline * make style * Baseline fast test almost passed (w long desc) * still needs investigate. Following didn't passed descriped in TODO comment: - test_stable_diffusion_long_prompt - test_stable_diffusion_no_safety_checker Following didn't passed same as stable_diffusion_pipeline: - test_attention_slicing_forward_pass - test_inference_batch_single_identical - test_xformers_attention_forwardGenerator_pass these seems come from calc accuracy. * Add note comment related vae_scale_factor * add test_stable_diffusion_controlnet_ddim * add assertion for vae_scale_factor != 8 * slow test of pipeline almost passed Failed: test_stable_diffusion_pipeline_with_model_offloading - ImportError: `enable_model_offload` requires `accelerate v0.17.0` or higher but currently latest version == 0.16.0 * test_stable_diffusion_long_prompt passed * test_stable_diffusion_no_safety_checker passed - due to its model size, move to slow test * remove PoC test files * fix num_of_image, prompt length issue add add test * add support List[PIL.Image] for controlnet_hint * wip * all slow test passed * make style * update for slow test * RGB(PIL)->BGR(ctrlnet) conversion * fixes * remove manual num_images_per_prompt test * add document * add `image` argument docstring * make style * Add line to correct conversion * add controlnet_conditioning_scale (aka control_scales strength) * rgb channel ordering by default * image batching logic * Add control image descriptions for each checkpoint * Only save controlnet model in conversion script * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py typo Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * add gerated image example * a depth mask -> a depth map * rename control_net.mdx to controlnet.mdx * fix toc title * add ControlNet abstruct and link * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py Co-authored-by: dqueue <dbyqin@gmail.com> * remove controlnet constructor arguments re: @patrickvonplaten * [integration tests] test canny * test_canny fixes * [integration tests] test_depth * [integration tests] test_hed * [integration tests] test_mlsd * add channel order config to controlnet * [integration tests] test normal * [integration tests] test_openpose test_scribble * change height and width to default to conditioning image * [integration tests] test seg * style * test_depth fix * [integration tests] size fixes * [integration tests] cpu offloading * style * generalize controlnet embedding * fix conversion script * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Style adapted to the documentation of pix2pix * merge main by hand * style * [docs] controlling generation doc nits * correct some things * add: controlnetmodel to autodoc. * finish docs * finish * finish 2 * correct images * finish controlnet * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * uP * upload model * up * up --------- Co-authored-by: William Berman <WLBberman@gmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co> Co-authored-by: dqueue <dbyqin@gmail.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
151 lines
5.8 KiB
Python
151 lines
5.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Conversion script for the LDM checkpoints. """
|
|
|
|
import argparse
|
|
|
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import load_pipeline_from_original_stable_diffusion_ckpt
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
|
)
|
|
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
|
|
parser.add_argument(
|
|
"--original_config_file",
|
|
default=None,
|
|
type=str,
|
|
help="The YAML config file corresponding to the original architecture.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_in_channels",
|
|
default=None,
|
|
type=int,
|
|
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
|
|
)
|
|
parser.add_argument(
|
|
"--scheduler_type",
|
|
default="pndm",
|
|
type=str,
|
|
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
|
|
)
|
|
parser.add_argument(
|
|
"--pipeline_type",
|
|
default=None,
|
|
type=str,
|
|
help=(
|
|
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"
|
|
". If `None` pipeline will be automatically inferred."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--image_size",
|
|
default=None,
|
|
type=int,
|
|
help=(
|
|
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
|
|
" Base. Use 768 for Stable Diffusion v2."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--prediction_type",
|
|
default=None,
|
|
type=str,
|
|
help=(
|
|
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
|
|
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--extract_ema",
|
|
action="store_true",
|
|
help=(
|
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
|
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
|
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--upcast_attention",
|
|
action="store_true",
|
|
help=(
|
|
"Whether the attention computation should always be upcasted. This is necessary when running stable"
|
|
" diffusion 2.1."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--from_safetensors",
|
|
action="store_true",
|
|
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
|
|
)
|
|
parser.add_argument(
|
|
"--to_safetensors",
|
|
action="store_true",
|
|
help="Whether to store pipeline in safetensors format or not.",
|
|
)
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
|
parser.add_argument(
|
|
"--stable_unclip",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.",
|
|
)
|
|
parser.add_argument(
|
|
"--stable_unclip_prior",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.",
|
|
)
|
|
parser.add_argument(
|
|
"--clip_stats_path",
|
|
type=str,
|
|
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.",
|
|
required=False,
|
|
)
|
|
parser.add_argument(
|
|
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
|
|
checkpoint_path=args.checkpoint_path,
|
|
original_config_file=args.original_config_file,
|
|
image_size=args.image_size,
|
|
prediction_type=args.prediction_type,
|
|
model_type=args.pipeline_type,
|
|
extract_ema=args.extract_ema,
|
|
scheduler_type=args.scheduler_type,
|
|
num_in_channels=args.num_in_channels,
|
|
upcast_attention=args.upcast_attention,
|
|
from_safetensors=args.from_safetensors,
|
|
device=args.device,
|
|
stable_unclip=args.stable_unclip,
|
|
stable_unclip_prior=args.stable_unclip_prior,
|
|
clip_stats_path=args.clip_stats_path,
|
|
controlnet=args.controlnet,
|
|
)
|
|
|
|
if args.controlnet:
|
|
# only save the controlnet model
|
|
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
|
else:
|
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|