1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/docs
Tolga Cangöz 7298bdd817 Add SkyReels V2: Infinite-Length Film Generative Model (#11518)
* style

* Fix class name casing for SkyReelsV2 components in multiple files to ensure consistency and correct functionality.

* cleaning

* cleansing

* Refactor `get_timestep_embedding` to move modifications into `SkyReelsV2TimeTextImageEmbedding`.

* Remove unnecessary line break in `get_timestep_embedding` function for cleaner code.

* Remove `skyreels_v2` entry from `_import_structure` and update its initialization to directly assign the list of SkyReelsV2 components.

* cleansing

* Refactor attention processing in `SkyReelsV2AttnProcessor2_0` to always convert query, key, and value to `torch.bfloat16`, simplifying the code and improving clarity.

* Enhance example usage in `pipeline_skyreels_v2_diffusion_forcing.py` by adding VAE initialization and detailed prompt for video generation, improving clarity and usability of the documentation.

* Refactor import structure in `__init__.py` for SkyReelsV2 components and improve formatting in `pipeline_skyreels_v2_diffusion_forcing.py` to enhance code readability and maintainability.

* Update `guidance_scale` parameter in `SkyReelsV2DiffusionForcingPipeline` from 5.0 to 6.0 to enhance video generation quality.

* Update `guidance_scale` parameter in example documentation and class definition of `SkyReelsV2DiffusionForcingPipeline` to ensure consistency and improve video generation quality.

* Update `causal_block_size` parameter in `SkyReelsV2DiffusionForcingPipeline` to default to `None`.

* up

* Fix dtype conversion for `timestep_proj` in `SkyReelsV2Transformer3DModel` to *ensure* correct tensor operations.

* Optimize causal mask generation by replacing repeated tensor with `repeat_interleave` for improved efficiency in `SkyReelsV2Transformer3DModel`.

* style

* Enhance example documentation in `SkyReelsV2DiffusionForcingPipeline` with guidance scale and shift parameters for T2V and I2V. Remove unused `retrieve_latents` function to streamline the code.

* Refactor sample scheduler creation in `SkyReelsV2DiffusionForcingPipeline` to use `deepcopy` for improved state management during inference steps.

* Enhance error handling and documentation in `SkyReelsV2DiffusionForcingPipeline` for `overlap_history` and `addnoise_condition` parameters to improve long video generation guidance.

* Update documentation and progress bar handling in `SkyReelsV2DiffusionForcingPipeline` to clarify asynchronous inference settings and improve progress tracking during denoising steps.

* Refine progress bar calculation in `SkyReelsV2DiffusionForcingPipeline` by rounding the step size to one decimal place for improved readability during denoising steps.

* Update import statements in `SkyReelsV2DiffusionForcingPipeline` documentation for improved clarity and organization.

* Refactor progress bar handling in `SkyReelsV2DiffusionForcingPipeline` to use total steps instead of calculated step size.

* update templates for i2v, v2v

* Add `retrieve_latents` function to streamline latent retrieval in `SkyReelsV2DiffusionForcingPipeline`. Update video latent processing to utilize this new function for improved clarity and maintainability.

* Add `retrieve_latents` function to both i2v and v2v pipelines for consistent latent retrieval. Update video latent processing to utilize this function, enhancing clarity and maintainability across the SkyReelsV2DiffusionForcingPipeline implementations.

* Remove redundant ValueError for `overlap_history` in `SkyReelsV2DiffusionForcingPipeline` to streamline error handling and improve user guidance for long video generation.

* Update default video dimensions and flow matching scheduler parameter in `SkyReelsV2DiffusionForcingPipeline` to enhance video generation capabilities.

* Refactor `SkyReelsV2DiffusionForcingPipeline` to support Image-to-Video (i2v) generation. Update class name, add image encoding functionality, and adjust parameters for improved video generation. Enhance error handling for image inputs and update documentation accordingly.

* Improve organization for image-last_image condition.

* Refactor `SkyReelsV2DiffusionForcingImageToVideoPipeline` to improve latent preparation and video condition handling integration.

* style

* style

* Add example usage of PIL for image input in `SkyReelsV2DiffusionForcingImageToVideoPipeline` documentation.

* Refactor `SkyReelsV2DiffusionForcingPipeline` to `SkyReelsV2DiffusionForcingVideoToVideoPipeline`, enhancing support for Video-to-Video (v2v) generation. Introduce video input handling, update latent preparation logic, and improve error handling for input parameters.

* Refactor `SkyReelsV2DiffusionForcingImageToVideoPipeline` by removing the `image_encoder` and `image_processor` dependencies. Update the CPU offload sequence accordingly.

* Refactor `SkyReelsV2DiffusionForcingImageToVideoPipeline` to enhance latent preparation logic and condition handling. Update image input type to `Optional`, streamline video condition processing, and improve handling of `last_image` during latent generation.

* Enhance `SkyReelsV2DiffusionForcingPipeline` by refining latent preparation for long video generation. Introduce new parameters for video handling, overlap history, and causal block size. Update logic to accommodate both short and long video scenarios, ensuring compatibility and improved processing.

* refactor

* fix num_frames

* fix prefix_video_latents

* up

* refactor

* Fix typo in scheduler method call within `SkyReelsV2DiffusionForcingVideoToVideoPipeline` to ensure proper noise scaling during latent generation.

* up

* Enhance `SkyReelsV2DiffusionForcingImageToVideoPipeline` by adding support for `last_image` parameter and refining latent frame calculations. Update preprocessing logic.

* add statistics

* Refine latent frame handling in `SkyReelsV2DiffusionForcingImageToVideoPipeline` by correcting variable names and reintroducing latent mean and standard deviation calculations. Update logic for frame preparation and sampling to ensure accurate video generation.

* up

* refactor

* up

* Refactor `SkyReelsV2DiffusionForcingVideoToVideoPipeline` to improve latent handling by enforcing tensor input for video, updating frame preparation logic, and adjusting default frame count. Enhance preprocessing and postprocessing steps for better integration.

* style

* fix vae output indexing

* upup

* up

* Fix tensor concatenation and repetition logic in `SkyReelsV2DiffusionForcingImageToVideoPipeline` to ensure correct dimensionality for video conditions and latent conditions.

* Refactor latent retrieval logic in `SkyReelsV2DiffusionForcingVideoToVideoPipeline` to handle tensor dimensions more robustly, ensuring compatibility with both 3D and 4D video inputs.

* Enhance logging in `SkyReelsV2DiffusionForcing` pipelines by adding iteration print statements for better debugging. Clean up unused code related to prefix video latents length calculation in `SkyReelsV2DiffusionForcingImageToVideoPipeline`.

* Update latent handling in `SkyReelsV2DiffusionForcingImageToVideoPipeline` to conditionally set latents based on video iteration state, improving flexibility for video input processing.

* Refactor `SkyReelsV2TimeTextImageEmbedding` to utilize `get_1d_sincos_pos_embed_from_grid` for timestep projection.

* Enhance `get_1d_sincos_pos_embed_from_grid` function to include an optional parameter `flip_sin_to_cos` for flipping sine and cosine embeddings, improving flexibility in positional embedding generation.

* Update timestep projection in `SkyReelsV2TimeTextImageEmbedding` to include `flip_sin_to_cos` parameter, enhancing the flexibility of time embedding generation.

* Refactor tensor type handling in `SkyReelsV2AttnProcessor2_0` and `SkyReelsV2TransformerBlock` to ensure consistent use of `torch.float32` and `torch.bfloat16`, improving integration.

* Update tensor type in `SkyReelsV2RotaryPosEmbed` to use `torch.float32` for frequency calculations, ensuring consistency in data types across the model.

* Refactor `SkyReelsV2TimeTextImageEmbedding` to utilize automatic mixed precision for timestep projection.

* down

* down

* style

* Add debug tensor tracking to `SkyReelsV2Transformer3DModel` for enhanced debugging and output analysis; update `Transformer2DModelOutput` to include debug tensors.

* up

* Refactor indentation in `SkyReelsV2AttnProcessor2_0` to improve code readability and maintain consistency in style.

* Convert query, key, and value tensors to bfloat16 in `SkyReelsV2AttnProcessor2_0` for improved performance.

* Add debug print statements in `SkyReelsV2TransformerBlock` to track tensor shapes and values for improved debugging and analysis.

* debug

* debug

* Remove commented-out debug tensor tracking from `SkyReelsV2TransformerBlock`

* Add functionality to save processed video latents as a Safetensors file in `SkyReelsV2DiffusionForcingPipeline`.

* up

* Add functionality to save output latents as a Safetensors file in `SkyReelsV2DiffusionForcingPipeline`.

* up

* Remove additional commented-out debug tensor tracking from `SkyReelsV2TransformerBlock` and `SkyReelsV2Transformer3DModel` for cleaner code.

* style

* cleansing

* Update example documentation and parameters in `SkyReelsV2Pipeline`. Adjusted example code for loading models, modified default values for height, width, num_frames, and guidance_scale, and improved output video quality settings.

* Update shift parameter in example documentation and default values across SkyReels V2 pipelines. Adjusted shift values for I2V from 3.0 to 5.0 and updated related example code for consistency.

* Update example documentation in SkyReels V2 pipelines to include available model options and update model references for loading. Adjusted model names to reflect the latest versions across I2V, V2V, and T2V pipelines.

* Add test templates

* style

* Add docs template

* Add SkyReels V2 Diffusion Forcing Video-to-Video Pipeline to imports

* style

* fix-copies

* convert i2v 1.3b

* Update transformer configuration to include `image_dim` for SkyReels V2 models and refactor imports to use `SkyReelsV2Transformer3DModel`.

* Refactor transformer import in SkyReels V2 pipeline to use `SkyReelsV2Transformer3DModel` for consistency.

* Update transformer configuration in SkyReels V2 to increase `in_channels` from 16 to 36 for i2v conf.

* Update transformer configuration in SkyReels V2 to set `added_kv_proj_dim` values for different model types.

* up

* up

* up

* Add SkyReelsV2Pipeline support for T2V model type in conversion script

* upp

* Refactor model type checks in conversion script to use substring matching for improved flexibility

* upp

* Fix shard path formatting in conversion script to accommodate varying model types by dynamically adjusting zero padding.

* Update sharded safetensors loading logic in conversion script to use substring matching for model directory checks

* Update scheduler parameters in SkyReels V2 test files for consistency across image and video pipelines

* Refactor conversion script to initialize text encoder, tokenizer, and scheduler for SkyReels pipelines, enhancing model integration

* style

* Update documentation for SkyReels-V2, introducing the Infinite-length Film Generative model, enhancing text-to-video generation examples, and updating model references throughout the API documentation.

* Add SkyReelsV2Transformer3DModel and FlowMatchUniPCMultistepScheduler documentation, updating TOC and introducing new model and scheduler files.

* style

* Update documentation for SkyReelsV2DiffusionForcingPipeline to correct flow matching scheduler parameter for I2V from 3.0 to 5.0, ensuring clarity in usage examples.

* Add documentation for causal_block_size parameter in SkyReelsV2DF pipelines, clarifying its role in asynchronous inference.

* Simplify min_ar_step calculation in SkyReelsV2DiffusionForcingPipeline to improve clarity.

* style and fix-copies

* style

* Add documentation for SkyReelsV2Transformer3DModel

Introduced a new markdown file detailing the SkyReelsV2Transformer3DModel, including usage instructions and model output specifications.

* Update test configurations for SkyReelsV2 pipelines

- Adjusted `in_channels` from 36 to 16 in `test_skyreels_v2_df_image_to_video.py`.
- Added new parameters: `overlap_history`, `num_frames`, and `base_num_frames` in `test_skyreels_v2_df_video_to_video.py`.
- Updated expected output shape in video tests from (17, 3, 16, 16) to (41, 3, 16, 16).

* Refines SkyReelsV2DF test parameters

* Update src/diffusers/models/modeling_outputs.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Refactor `grid_sizes` processing by using already-calculated post-patch parameters to simplify

* Update docs/source/en/api/pipelines/skyreels_v2.md

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Refactor parameter naming for diffusion forcing in SkyReelsV2 pipelines

- Changed `flag_df` to `enable_diffusion_forcing` for clarity in the SkyReelsV2Transformer3DModel and associated pipelines.
- Updated all relevant method calls to reflect the new parameter name.

* Revert _toctree.yml to adjust section expansion states

* style

* Update docs/source/en/api/models/skyreels_v2_transformer_3d.md

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Add copying label to SkyReelsV2ImageEmbedding from WanImageEmbedding.

* Refactor transformer block processing in SkyReelsV2Transformer3DModel

- Ensured proper handling of hidden states during both gradient checkpointing and standard processing.

* Update SkyReels V2 documentation to remove VRAM requirement and streamline imports

- Removed the mention of ~13GB VRAM requirement for the SkyReels-V2 model.
- Simplified import statements by removing unused `load_image` import.

* Add SkyReelsV2LoraLoaderMixin for loading and managing LoRA layers in SkyReelsV2Transformer3DModel

- Introduced SkyReelsV2LoraLoaderMixin class to handle loading, saving, and fusing of LoRA weights specific to the SkyReelsV2 model.
- Implemented methods for state dict management, including compatibility checks for various LoRA formats.
- Enhanced functionality for loading weights with options for low CPU memory usage and hotswapping.
- Added detailed docstrings for clarity on parameters and usage.

* Update SkyReelsV2 documentation and loader mixin references

- Corrected the documentation to reference the new `SkyReelsV2LoraLoaderMixin` for loading LoRA weights.
- Updated comments in the `SkyReelsV2LoraLoaderMixin` class to reflect changes in model references from `WanTransformer3DModel` to `SkyReelsV2Transformer3DModel`.

* Enhance SkyReelsV2 integration by adding SkyReelsV2LoraLoaderMixin references

- Added `SkyReelsV2LoraLoaderMixin` to the documentation and loader imports for improved LoRA weight management.
- Updated multiple pipeline classes to inherit from `SkyReelsV2LoraLoaderMixin` instead of `WanLoraLoaderMixin`.

* Update SkyReelsV2 model references in documentation

- Replaced placeholder model paths with actual paths for SkyReels-V2 models in multiple pipeline files.
- Ensured consistency across the documentation for loading models in the SkyReelsV2 pipelines.

* style

* fix-copies

* Refactor `fps_projection` in `SkyReelsV2Transformer3DModel`

- Replaced the sequential linear layers for `fps_projection` with a `FeedForward` layer using `SiLU` activation for better integration.

* Update docs

* Refactor video processing in SkyReelsV2DiffusionForcingPipeline

- Renamed parameters for clarity: `video` to `video_latents` and `overlap_history` to `overlap_history_latent_frames`.
- Updated logic for handling long video generation, including adjustments to latent frame calculations and accumulation.
- Consolidated handling of latents for both long and short video generation scenarios.
- Final decoding step now consistently converts latents to pixels, ensuring proper output format.

* Update activation function in `fps_projection` of `SkyReelsV2Transformer3DModel`

- Changed activation function from `silu` to `linear-silu` in the `fps_projection` layer for improved performance and integration.

* Add fps_projection layer renaming in convert_skyreelsv2_to_diffusers.py

- Updated key mappings for the `fps_projection` layer to align with new naming conventions, ensuring consistency in model integration.

* Fix fps_projection assignment in SkyReelsV2Transformer3DModel

- Corrected the assignment of the `fps_projection` layer to ensure it is properly cast to the appropriate data type, enhancing model functionality.

* Update _keep_in_fp32_modules in SkyReelsV2Transformer3DModel

- Added `fps_projection` to the list of modules that should remain in FP32 precision, ensuring proper handling of data types during model operations.

* Remove integration test classes from SkyReelsV2 test files

- Deleted the `SkyReelsV2DiffusionForcingPipelineIntegrationTests` and `SkyReelsV2PipelineIntegrationTests` classes along with their associated setup, teardown, and test methods, as they were not implemented and not needed for current testing.

* style

* Refactor: Remove hardcoded `torch.bfloat16` cast in attention

* Refactor: Simplify data type handling in transformer model

Removes unnecessary data type conversions for the FPS embedding and timestep projection.

This change simplifies the forward pass by relying on the inherent data types of the tensors.

* Refactor: Remove `fps_projection` from `_keep_in_fp32_modules` in `SkyReelsV2Transformer3DModel`

* Update src/diffusers/models/transformers/transformer_skyreels_v2.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Refactor: Remove unused flags and simplify attention mask handling in SkyReelsV2AttnProcessor2_0 and SkyReelsV2Transformer3DModel

Refactor: Simplify causal attention logic in SkyReelsV2

Removes the `flag_causal_attention` and `_flag_ar_attention` flags to simplify the implementation.

The decision to apply a causal attention mask is now based directly on the `num_frame_per_block` configuration, eliminating redundant flags and conditional checks. This streamlines the attention mechanism and simplifies the `set_ar_attention` methods.

* Refactor: Clarify variable names for latent frames

Renames `base_num_frames` to `base_latent_num_frames` to make it explicit that the variable refers to the number of frames in the latent space.

This change improves code readability and reduces potential confusion between latent frames and decoded video frames.

The `num_frames` parameter in `generate_timestep_matrix` is also renamed to `num_latent_frames` for consistency.

* Enhance documentation: Add detailed docstring for timestep matrix generation in SkyReelsV2DiffusionForcingPipeline

* Docs: Clarify long video chunking in pipeline docstring

Improves the explanation of long video processing within the pipeline's docstring.

The update replaces the abstract description with a concrete example, illustrating how the sliding window mechanism works with overlapping chunks. This makes the roles of `base_num_frames` and `overlap_history` clearer for users.

* Docs: Move visual demonstration and processing details for SkyReelsV2DiffusionForcingPipeline to docs page from the code

* Docs: Update asynchronous processing timeline and examples for long video handling in SkyReels-V2 documentation

* Enhance timestep matrix generation documentation and logic for synchronous/asynchronous video processing

* Update timestep matrix documentation and enhance analysis for clarity in SkyReelsV2DiffusionForcingPipeline

* Docs: Update visual demonstration section and add detailed step matrix construction example for asynchronous processing in SkyReelsV2DiffusionForcingPipeline

* style

* fix-copies

* Refactor parameter names for clarity in SkyReelsV2DiffusionForcingImageToVideoPipeline and SkyReelsV2DiffusionForcingVideoToVideoPipeline

* Refactor: Avoid VAE roundtrip in long video generation

Improves performance and quality for long video generation by operating entirely in latent space during the iterative generation process.

Instead of decoding latents to video and then re-encoding the overlapping section for the next chunk, this change passes the generated latents directly between iterations.

This avoids a computationally expensive and potentially lossy VAE decode/encode cycle within the loop. The full video is now decoded only once from the accumulated latents at the end of the process.

* Refactor: Rename prefix_video_latents_length to prefix_video_latents_frames for clarity

* Refactor: Rename num_latent_frames to current_num_latent_frames for clarity in SkyReelsV2DiffusionForcingImageToVideoPipeline

* Refactor: Enhance long video generation logic and improve latent handling in SkyReelsV2DiffusionForcingImageToVideoPipeline

Refactor: Unify video generation and pass latents directly

Unifies the separate code paths for short and long video generation into a single, streamlined loop.

This change eliminates the inefficient decode-encode cycle during long video generation. Instead of converting latents to pixel-space video between chunks, the pipeline now passes the generated latents directly to the next iteration.

This improves performance, avoids potential quality loss from intermediate VAE steps, and enhances code maintainability by removing significant duplication.

* style

* Refactor: Remove overlap_history parameter and streamline long video generation logic in SkyReelsV2DiffusionForcingImageToVideoPipeline

Refactor: Streamline long video generation logic

Removes the `overlap_history` parameter and simplifies the conditioning process for long video generation.

This change avoids a redundant VAE encoding step by directly using latent frames from the previous chunk for conditioning. It also moves image preprocessing outside the main generation loop to prevent repeated computations and clarifies the handling of prefix latents.

* style

* Refactor latent handling in i2v diffusion forcing pipeline

Improves the latent conditioning and accumulation logic within the image-to-video diffusion forcing loop.

- Corrects the splitting of the initial conditioning tensor to robustly handle both even and odd lengths.
- Simplifies how latents are accumulated across iterations for long video generation.
- Ensures the final latents are trimmed correctly before decoding only when a `last_image` is provided.

* Refactor: Remove overlap_history parameter from SkyReelsV2DiffusionForcingImageToVideoPipeline

* Refactor: Adjust video_latents parameter handling in prepare_latents method

* style

* Refactor: Update long video iteration print statements for clarity

* Fix: Update transformer config with dynamic causal block size

Updates the SkyReelsV2 pipelines to correctly set the `causal_block_size` in the transformer's configuration when it's provided during a pipeline call.

This ensures the model configuration reflects the user's specified setting for the inference run. The `set_ar_attention` method is also renamed to `_set_ar_attention` to mark it as an internal helper.

* style

* Refactor: Adjust video input size and expected output shape in inference test

* Refactor: Rename video variables for clarity in SkyReelsV2DiffusionForcingVideoToVideoPipeline

* Docs: Clarify time embedding logic in SkyReelsV2

Adds comments to explain the handling of different time embedding tensor dimensions.

A 2D tensor is used for standard models with a single time embedding per batch, while a 3D tensor is used for Diffusion Forcing models where each frame has its own time embedding. This clarifies the expected input for different model variations.

* Docs: Update SkyReels V2 pipeline examples

Updates the docstring examples for the SkyReels V2 pipelines to reflect current best practices and API changes.

- Removes the `shift` parameter from pipeline call examples, as it is now configured directly on the scheduler.
- Replaces the `set_ar_attention` method call with the `causal_block_size` argument in the pipeline call for diffusion forcing examples.
- Adjusts recommended parameters for I2V and V2V examples, including inference steps, guidance scale, and `ar_step`.

* Refactor: Remove `shift` parameter from SkyReelsV2 pipelines

Removes the `shift` parameter from the call signature of all SkyReelsV2 pipelines.

This parameter is a scheduler-specific configuration and should be set directly on the scheduler during its initialization, rather than being passed at runtime through the pipeline. This change simplifies the pipeline API.

Usage examples are updated to reflect that the `shift` value should now be passed when creating the `FlowMatchUniPCMultistepScheduler`.

* Refactors SkyReelsV2 image-to-video tests and adds last image case

Simplifies the test suite by removing a duplicated test class and streamlining the dummy component and input generation.

Adds a new test to verify the pipeline's behavior when a `last_image` is provided as input for conditioning.

* test: Add image components to SkyReelsV2 pipeline test

Adds the `image_encoder` and `image_processor` to the test components for the image-to-video pipeline.

Also replaces a hardcoded value for the positional embedding sequence length with a more descriptive calculation, improving clarity.

* test: Add callback configuration test for SkyReelsV2DiffusionForcingVideoToVideoPipeline

test: Add callback test for SkyReelsV2DFV2V pipeline

Adds a test to validate the callback functionality for the `SkyReelsV2DiffusionForcingVideoToVideoPipeline`.

This test confirms that `callback_on_step_end` is invoked correctly and can modify the pipeline's state during inference. It uses a callback to dynamically increase the `guidance_scale` and asserts that the final value is as expected.

The implementation correctly accounts for the nested denoising loops present in diffusion forcing pipelines.

* style

* fix: Update image_encoder type to CLIPVisionModelWithProjection in SkyReelsV2ImageToVideoPipeline

* UP

* Add conversion support for SkyReels-V2-FLF2V models

Adds configurations for three new FLF2V model variants (1.3B-540P, 14B-540P, and 14B-720P) to the conversion script.

This change also introduces specific handling to zero out the image positional embeddings for these models and updates the main script to correctly initialize the image-to-video pipeline.

* Docs: Update and simplify SkyReels V2 usage examples

Simplifies the text-to-video example by removing the manual group offloading configuration, making it more straightforward.

Adds comments to pipeline parameters to clarify their purpose and provides guidance for different resolutions and long video generation.

Introduces a new section with a code example for the video-to-video pipeline.

* style

* docs: Add SkyReels-V2 FLF2V 1.3B model to supported models list

* docs: Update SkyReels-V2 documentation

* Move the initialization of the `gradient_checkpointing` attribute to its suggested location.

* Refactor: Use logger for long video progress messages

Replaces `print()` calls with `logger.debug()` for reporting progress during long video generation in SkyReelsV2DF pipelines.

This change reduces console output verbosity for standard runs while allowing developers to view progress by enabling debug-level logging.

* Refactor SkyReelsV2 timestep embedding into a module

Extract the sinusoidal timestep embedding logic into a new `SkyReelsV2Timesteps` `nn.Module`.

This change encapsulates the embedding generation, which simplifies the `SkyReelsV2TimeTextImageEmbedding` class and improves code modularity.

* Fix: Preserve original shape in timestep embeddings

Reshapes the timestep embedding tensor to match the original input shape.

This ensures that batched timestep inputs retain their batch dimension after embedding, preventing potential shape mismatches.

* style

* Refactor: Move SkyReelsV2Timesteps to model file

Colocates the `SkyReelsV2Timesteps` class with the SkyReelsV2 transformer model.

This change moves model-specific timestep embedding logic from the general embeddings module to the transformer's own file, improving modularity and making the model more self-contained.

* Refactor parameter dtype retrieval to use utility function

Replaces manual parameter iteration with the `get_parameter_dtype` helper to determine the time embedder's data type.

This change improves code readability and centralizes the logic.

* Add comments to track the tensor shape transformations

* Add copied froms

* style

* fix-copies

* up

* Remove FlowMatchUniPCMultistepScheduler

Deletes the `FlowMatchUniPCMultistepScheduler` as it is no longer being used.

* Refactor: Replace FlowMatchUniPC scheduler with UniPC

Removes the `FlowMatchUniPCMultistepScheduler` and integrates its functionality into the existing `UniPCMultistepScheduler`.

This consolidation is achieved by using the `use_flow_sigmas=True` parameter in `UniPCMultistepScheduler`, simplifying the scheduler API and reducing code duplication. All usages, documentation, and tests are updated accordingly.

* style

* Remove text_encoder parameter from SkyReelsV2DiffusionForcingPipeline initialization

* Docs: Rename `pipe` to `pipeline` in SkyReels examples

Updates the variable name from `pipe` to `pipeline` across all SkyReels V2 documentation examples. This change improves clarity and consistency.

* Fix: Rename shift parameter to flow_shift in SkyReels-V2 examples

* Fix: Rename shift parameter to flow_shift in example documentation across SkyReels-V2 files

* Fix: Rename shift parameter to flow_shift in UniPCMultistepScheduler initialization across SkyReels test files

* Removes unused generator argument from scheduler step

The `generator` parameter is not used by the scheduler's `step` method within the SkyReelsV2 diffusion forcing pipelines. This change removes the unnecessary argument from the method call for code clarity and consistency.

* Fix: Update time_embedder_dtype assignment to use the first parameter's dtype in SkyReelsV2TimeTextImageEmbedding

* style

* Refactor: Use get_parameter_dtype utility function

Replaces manual parameter iteration with the `get_parameter_dtype` helper.

* Fix: Prevent (potential) error in parameter dtype check

Adds a check to ensure the `_keep_in_fp32_modules` attribute exists on a parameter before it is accessed.

This prevents a potential `AttributeError`, making the utility function more robust when used with models that do not define this attribute.

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
2025-07-16 08:24:41 -10:00
..

Generating the documentation

To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository:

pip install -e ".[docs]"

Then you need to install our open source documentation builder tool:

pip install git+https://github.com/huggingface/doc-builder

NOTE

You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to commit the built documentation.


Previewing the documentation

To preview the docs, first install the watchdog module with:

pip install watchdog

Then run the following command:

doc-builder preview {package_name} {path_to_docs}

For example:

doc-builder preview diffusers docs/source/en

The docs will be viewable at http://localhost:3000. You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.


NOTE

The preview command only works with existing doc files. When you add a completely new file, you need to update _toctree.yml & restart preview command (ctrl-c to stop it & call doc-builder preview ... again).


Adding a new element to the navigation bar

Accepted files are Markdown (.md).

Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the _toctree.yml file.

Renaming section headers and moving sections

It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.

Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.

So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:

Sections that were moved:

[ <a href="#section-b">Section A</a><a id="section-a"></a> ]

and of course, if you moved it to another file, then:

Sections that were moved:

[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]

Use the relative style to link to the new file so that the versioned docs continue to work.

For an example of a rich moved section set please see the very end of the transformers Trainer doc.

Writing Documentation - Specification

The huggingface/diffusers documentation follows the Google documentation style for docstrings, although we can write them directly in Markdown.

Adding a new tutorial

Adding a new tutorial or section is done in two steps:

  • Add a new Markdown (.md) file under docs/source/<languageCode>.
  • Link that file in docs/source/<languageCode>/_toctree.yml on the correct toc-tree.

Make sure to put your new file under the proper section. It's unlikely to go in the first section (Get Started), so depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four.

Adding a new pipeline/scheduler

When adding a new pipeline:

  • Create a file xxx.md under docs/source/<languageCode>/api/pipelines (don't hesitate to copy an existing file as template).
  • Link that file in (Diffusers Summary) section in docs/source/api/pipelines/overview.md, along with the link to the paper, and a colab notebook (if available).
  • Write a short overview of the diffusion model:
    • Overview with paper & authors
    • Paper abstract
    • Tips and tricks and how to use it best
    • Possible an end-to-end example of how to use it
  • Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows:
[[autodoc]] XXXPipeline
    - all
	- __call__

This will include every public method of the pipeline that is documented, as well as the __call__ method that is not documented by default. If you just want to add additional methods that are not documented, you can put the list of all methods to add in a list that contains all.

[[autodoc]] XXXPipeline
    - all
	- __call__
	- enable_attention_slicing
	- disable_attention_slicing
    - enable_xformers_memory_efficient_attention
    - disable_xformers_memory_efficient_attention

You can follow the same process to create a new scheduler under the docs/source/<languageCode>/api/schedulers folder.

Writing source documentation

Values that should be put in code should either be surrounded by backticks: `like so`. Note that argument names and objects like True, None, or any strings should usually be put in code.

When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: [`XXXClass`] or [`function`]. This requires the class or function to be in the main package.

If you want to create a link to some internal class or function, you need to provide its path. For instance: [`pipelines.ImagePipelineOutput`]. This will be converted into a link with pipelines.ImagePipelineOutput in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: [`~pipelines.ImagePipelineOutput`] will generate a link with ImagePipelineOutput in the description.

The same works for methods so you can either use [`XXXClass.method`] or [`~XXXClass.method`].

Defining arguments in a method

Arguments should be defined with the Args: (or Arguments: or Parameters:) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its description:

    Args:
        n_layers (`int`): The number of layers of the model.

If the description is too long to fit in one line, another indentation is necessary before writing the description after the argument.

Here's an example showcasing everything so far:

    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and
            [`~PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)

For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature:

def my_function(x: str=None, a: float=3.14):

then its documentation should look like this:

    Args:
        x (`str`, *optional*):
            This argument controls ...
        a (`float`, *optional*, defaults to `3.14`):
            This argument is used to ...

Note that we always omit the "defaults to `None`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it on several lines. You can however write as many lines as you want in the indented description (see the example above with input_ids).

Writing a multi-line code block

Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:

```
# first line of code
# second line
# etc
```

Writing a return block

The return block should be introduced with the Returns: prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return.

Here's an example of a single value return:

    Returns:
        `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.

Here's an example of a tuple return, comprising several objects:

    Returns:
        `tuple(torch.Tensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
        - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.Tensor` of shape `(1,)` --
          Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        - **prediction_scores** (`torch.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
          Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

Adding an image

Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted dataset like the ones hosted on hf-internal-testing in which to place these files and reference them by URL. We recommend putting them in the following dataset: huggingface/documentation-images. If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images to this dataset.

Styling the docstring

We have an automatic script running with the make style command that will make sure that:

  • the docstrings fully take advantage of the line width
  • all code examples are formatted using black, like the code of the Transformers library

This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running make style, so you can revert the changes done by that script easily.