1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py
clarencechen c6e56e92ed Add Recent Timestep Scheduling Improvements to DDIM Inverse Scheduler (#3865)
* Add Recent Timestep Scheduling Improvements to DDIM Inverse Scheduler

Roll timesteps by one to reflect origin-destination semantic discrepancy

Restore `set_alpha_to_one` option to handle negative initial timesteps

Remove `set_alpha_to_zero` option not used due to previous truncation

* Bugfix

* Remove unnecessary calls to `detach()`

Use `self.image_processor.preprocess` in DiffEdit pipeline functions

* Preprocess list input for inverted image latents in diffedit pipeline

* Add `timestep_spacing` and `steps_offset` to `DPMSolverMultistepInverseScheduler`

* Update expected test results to account for inverting last forward diffusion step

* Fix inversion progress bar bug

* Add first draft for proper fast tests for DDIMInverseScheduler

* Add deprecated DDIMInverseScheduler kwarg to ConfigMixer registry

* Fix test failure in DPMMultistepInverseScheduler

Invert step specification leads to negative noise variance in SDE-based algs

Add first draft for proper fast tests for DPMMultistepInverseScheduler

* Update expected test results to account for inverting last forward diffusion step

Clean up diffedit fast test
2023-07-18 11:35:16 +02:00

400 lines
14 KiB
Python

# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNet2DConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionDiffEditPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = StableDiffusionDiffEditPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
image_params = frozenset(
[]
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
inverse_scheduler = DDIMInverseScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_zero=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=512,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"inverse_scheduler": inverse_scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
mask = floats_tensor((1, 16, 16), rng=random.Random(seed)).to(device)
latents = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "a dog and a newt",
"mask_image": mask,
"image_latents": latents,
"generator": generator,
"num_inference_steps": 2,
"inpaint_strength": 1.0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def get_dummy_mask_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": image,
"source_prompt": "a cat and a frog",
"target_prompt": "a dog and a newt",
"generator": generator,
"num_inference_steps": 2,
"num_maps_per_mask": 2,
"mask_encode_strength": 1.0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def get_dummy_inversion_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
image = Image.fromarray(np.uint8(image)).convert("RGB")
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": image,
"prompt": "a cat and a frog",
"generator": generator,
"num_inference_steps": 2,
"inpaint_strength": 1.0,
"guidance_scale": 6.0,
"decode_latents": True,
"output_type": "numpy",
}
return inputs
def test_save_load_optional_components(self):
if not hasattr(self.pipeline_class, "_optional_components"):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components})
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(output - output_loaded).max()
self.assertLess(max_diff, 1e-4)
def test_mask(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_mask_inputs(device)
mask = pipe.generate_mask(**inputs)
mask_slice = mask[0, -3:, -3:]
self.assertEqual(mask.shape, (1, 16, 16))
expected_slice = np.array([0] * 9)
max_diff = np.abs(mask_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
self.assertEqual(mask[0, -3, -4], 0)
def test_inversion(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
image = pipe.invert(**inputs).images
image_slice = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3))
expected_slice = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5105, 0.5015, 0.4407, 0.4799],
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=5e-3)
def test_inversion_dpm(self):
device = "cpu"
components = self.get_dummy_components()
scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"}
components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args)
components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args)
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inversion_inputs(device)
image = pipe.invert(**inputs).images
image_slice = image[0, -1, -3:, -3:]
self.assertEqual(image.shape, (2, 32, 32, 3))
expected_slice = np.array(
[0.5305, 0.4673, 0.5314, 0.5308, 0.4886, 0.5279, 0.5142, 0.4724, 0.4892],
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
@require_torch_gpu
@slow
class StableDiffusionDiffEditPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def setUpClass(cls):
raw_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png"
)
raw_image = raw_image.convert("RGB").resize((768, 768))
cls.raw_image = raw_image
def test_stable_diffusion_diffedit_full(self):
generator = torch.manual_seed(0)
pipe = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
source_prompt = "a bowl of fruit"
target_prompt = "a bowl of pears"
mask_image = pipe.generate_mask(
image=self.raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
generator=generator,
)
inv_latents = pipe.invert(
prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator
).latents
image = pipe(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
generator=generator,
negative_prompt=source_prompt,
inpaint_strength=0.7,
output_type="numpy",
).images[0]
expected_image = (
np.array(
load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/diffedit/pears.png"
).resize((768, 768))
)
/ 255
)
assert np.abs((expected_image - image).max()) < 5e-1
def test_stable_diffusion_diffedit_dpm(self):
generator = torch.manual_seed(0)
pipe = StableDiffusionDiffEditPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
source_prompt = "a bowl of fruit"
target_prompt = "a bowl of pears"
mask_image = pipe.generate_mask(
image=self.raw_image,
source_prompt=source_prompt,
target_prompt=target_prompt,
generator=generator,
)
inv_latents = pipe.invert(
prompt=source_prompt,
image=self.raw_image,
inpaint_strength=0.7,
generator=generator,
num_inference_steps=25,
).latents
image = pipe(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
generator=generator,
negative_prompt=source_prompt,
inpaint_strength=0.7,
num_inference_steps=25,
output_type="numpy",
).images[0]
expected_image = (
np.array(
load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/diffedit/pears.png"
).resize((768, 768))
)
/ 255
)
assert np.abs((expected_image - image).max()) < 5e-1