1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/README.md
Patrick von Platen 4032bedeb7 Update README.md
2022-06-02 12:15:59 +02:00

2.6 KiB

Diffusers

Definitions for diffusion models

diffusers.pdf

Library structure:

├── models
│   ├── audio
│   │   └── fastdiff
│   │       ├── modeling_fastdiff.py
│   │       ├── README.md
│   │       └── run_fastdiff.py
│   └── vision
│       ├── dalle2
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── ddpm
│       │   ├── modeling_ddpm.py
│       │   ├── README.md
│       │   └── run_ddpm.py
│       ├── glide
│       │   ├── modeling_glide.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       ├── imagen
│       │   ├── modeling_dalle2.py
│       │   ├── README.md
│       │   └── run_dalle2.py
│       └── latent_diffusion
│           ├── modeling_latent_diffusion.py
│           ├── README.md
│           └── run_latent_diffusion.py

├── src
│   └── diffusers
│       ├── configuration_utils.py
│       ├── __init__.py
│       ├── modeling_utils.py
│       ├── models
│       │   └── unet.py
│       ├── processors
│       └── samplers
│           ├── gaussian.py
├── tests
│   └── test_modeling_utils.py

1. diffusers as a central modular diffusion and sampler library

diffusers should be more modularized than transformers so that parts of it can be easily used in other libraries. It could become a central place for all kinds of models, samplers, training utils and processors required when using diffusion models in audio, vision, ... One should be able to save both models and samplers as well as load them from the Hub.

Example:

from diffusers import UNetModel, GaussianDiffusion
import torch

# 1. Load model
unet = UNetModel.from_pretrained("fusing/ddpm_dummy")

# 2. Do one denoising step with model
batch_size, num_channels, height, width = 1, 3, 32, 32
dummy_noise = torch.ones((batch_size, num_channels, height, width))
time_step = torch.tensor([10])
image = unet(dummy_noise, time_step)

# 3. Load sampler
sampler = GaussianDiffusion.from_config("fusing/ddpm_dummy")

# 4. Sample image from sampler passing the model
image = sampler.sample(model, batch_size=1)

print(image)