mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* refactor unet single file loading a bit. * retrieve the unet from create_diffusers_unet_model_from_ldm * update * update * updae * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * tests * update * update * update * Update docs/source/en/api/single_file.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/single_file.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * update * update * update * update * update * update * update * update * update * update * update * update * update * Update docs/source/en/api/loaders/single_file.md Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/loaders/single_file.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/loaders/single_file.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update * update --------- Co-authored-by: sayakpaul <spsayakpaul@gmail.com> Co-authored-by: YiYi Xu <yixu310@gmail.com>
79 lines
2.4 KiB
Python
79 lines
2.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import (
|
|
ControlNetModel,
|
|
)
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
require_torch_gpu,
|
|
slow,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class ControlNetModelSingleFileTests(unittest.TestCase):
|
|
model_class = ControlNetModel
|
|
ckpt_path = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
|
|
repo_id = "lllyasviel/control_v11p_sd15_canny"
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_single_file_components(self):
|
|
model = self.model_class.from_pretrained(self.repo_id)
|
|
model_single_file = self.model_class.from_single_file(self.ckpt_path)
|
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
|
|
for param_name, param_value in model_single_file.config.items():
|
|
if param_name in PARAMS_TO_IGNORE:
|
|
continue
|
|
assert (
|
|
model.config[param_name] == param_value
|
|
), f"{param_name} differs between single file loading and pretrained loading"
|
|
|
|
def test_single_file_arguments(self):
|
|
model_default = self.model_class.from_single_file(self.ckpt_path)
|
|
|
|
assert model_default.config.upcast_attention is False
|
|
assert model_default.dtype == torch.float32
|
|
|
|
torch_dtype = torch.float16
|
|
upcast_attention = True
|
|
|
|
model = self.model_class.from_single_file(
|
|
self.ckpt_path,
|
|
upcast_attention=upcast_attention,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
assert model.config.upcast_attention == upcast_attention
|
|
assert model.dtype == torch_dtype
|