mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* Discourage using `revision` * `make style && make quality` * Refactor code to use 'variant' instead of 'revision' * `revision="bf16"` -> `variant="bf16"` --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
109 lines
4.0 KiB
Python
109 lines
4.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
|
|
from diffusers.utils import is_flax_available
|
|
from diffusers.utils.testing_utils import nightly, require_flax
|
|
|
|
|
|
if is_flax_available():
|
|
import jax
|
|
import jax.numpy as jnp
|
|
from flax.jax_utils import replicate
|
|
from flax.training.common_utils import shard
|
|
|
|
|
|
@nightly
|
|
@require_flax
|
|
class FlaxStableDiffusion2PipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
|
|
def test_stable_diffusion_flax(self):
|
|
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-2",
|
|
variant="bf16",
|
|
dtype=jnp.bfloat16,
|
|
)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
num_samples = jax.device_count()
|
|
prompt = num_samples * [prompt]
|
|
prompt_ids = sd_pipe.prepare_inputs(prompt)
|
|
|
|
params = replicate(params)
|
|
prompt_ids = shard(prompt_ids)
|
|
|
|
prng_seed = jax.random.PRNGKey(0)
|
|
prng_seed = jax.random.split(prng_seed, jax.device_count())
|
|
|
|
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0]
|
|
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
|
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
|
image_slice = images[0, 253:256, 253:256, -1]
|
|
|
|
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
|
|
expected_slice = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512])
|
|
print(f"output_slice: {output_slice}")
|
|
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
|
|
|
|
|
|
@nightly
|
|
@require_flax
|
|
class FlaxStableDiffusion2PipelineNightlyTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
|
|
def test_stable_diffusion_dpm_flax(self):
|
|
model_id = "stabilityai/stable-diffusion-2"
|
|
scheduler, scheduler_params = FlaxDPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
|
|
sd_pipe, params = FlaxStableDiffusionPipeline.from_pretrained(
|
|
model_id,
|
|
scheduler=scheduler,
|
|
variant="bf16",
|
|
dtype=jnp.bfloat16,
|
|
)
|
|
params["scheduler"] = scheduler_params
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
num_samples = jax.device_count()
|
|
prompt = num_samples * [prompt]
|
|
prompt_ids = sd_pipe.prepare_inputs(prompt)
|
|
|
|
params = replicate(params)
|
|
prompt_ids = shard(prompt_ids)
|
|
|
|
prng_seed = jax.random.PRNGKey(0)
|
|
prng_seed = jax.random.split(prng_seed, jax.device_count())
|
|
|
|
images = sd_pipe(prompt_ids, params, prng_seed, num_inference_steps=25, jit=True)[0]
|
|
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
|
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
|
image_slice = images[0, 253:256, 253:256, -1]
|
|
|
|
output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
|
|
expected_slice = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297])
|
|
print(f"output_slice: {output_slice}")
|
|
assert jnp.abs(output_slice - expected_slice).max() < 1e-2
|