mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
354 lines
12 KiB
Python
354 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
|
|
|
|
from diffusers import DDPMWuerstchenScheduler, StableCascadeDecoderPipeline
|
|
from diffusers.models import StableCascadeUNet
|
|
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
load_numpy,
|
|
load_pt,
|
|
numpy_cosine_similarity_distance,
|
|
require_torch_gpu,
|
|
skip_mps,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableCascadeDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = StableCascadeDecoderPipeline
|
|
params = ["prompt"]
|
|
batch_params = ["image_embeddings", "prompt", "negative_prompt"]
|
|
required_optional_params = [
|
|
"num_images_per_prompt",
|
|
"num_inference_steps",
|
|
"latents",
|
|
"negative_prompt",
|
|
"guidance_scale",
|
|
"output_type",
|
|
"return_dict",
|
|
]
|
|
test_xformers_attention = False
|
|
callback_cfg_params = ["image_embeddings", "text_encoder_hidden_states"]
|
|
|
|
@property
|
|
def text_embedder_hidden_size(self):
|
|
return 32
|
|
|
|
@property
|
|
def time_input_dim(self):
|
|
return 32
|
|
|
|
@property
|
|
def block_out_channels_0(self):
|
|
return self.time_input_dim
|
|
|
|
@property
|
|
def time_embed_dim(self):
|
|
return self.time_input_dim * 4
|
|
|
|
@property
|
|
def dummy_tokenizer(self):
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
return tokenizer
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
projection_dim=self.text_embedder_hidden_size,
|
|
hidden_size=self.text_embedder_hidden_size,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
return CLIPTextModelWithProjection(config).eval()
|
|
|
|
@property
|
|
def dummy_vqgan(self):
|
|
torch.manual_seed(0)
|
|
|
|
model_kwargs = {
|
|
"bottleneck_blocks": 1,
|
|
"num_vq_embeddings": 2,
|
|
}
|
|
model = PaellaVQModel(**model_kwargs)
|
|
return model.eval()
|
|
|
|
@property
|
|
def dummy_decoder(self):
|
|
torch.manual_seed(0)
|
|
model_kwargs = {
|
|
"in_channels": 4,
|
|
"out_channels": 4,
|
|
"conditioning_dim": 128,
|
|
"block_out_channels": [16, 32, 64, 128],
|
|
"num_attention_heads": [-1, -1, 1, 2],
|
|
"down_num_layers_per_block": [1, 1, 1, 1],
|
|
"up_num_layers_per_block": [1, 1, 1, 1],
|
|
"down_blocks_repeat_mappers": [1, 1, 1, 1],
|
|
"up_blocks_repeat_mappers": [3, 3, 2, 2],
|
|
"block_types_per_layer": [
|
|
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
|
["SDCascadeResBlock", "SDCascadeTimestepBlock"],
|
|
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
|
["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
|
|
],
|
|
"switch_level": None,
|
|
"clip_text_pooled_in_channels": 32,
|
|
"dropout": [0.1, 0.1, 0.1, 0.1],
|
|
}
|
|
model = StableCascadeUNet(**model_kwargs)
|
|
return model.eval()
|
|
|
|
def get_dummy_components(self):
|
|
decoder = self.dummy_decoder
|
|
text_encoder = self.dummy_text_encoder
|
|
tokenizer = self.dummy_tokenizer
|
|
vqgan = self.dummy_vqgan
|
|
|
|
scheduler = DDPMWuerstchenScheduler()
|
|
|
|
components = {
|
|
"decoder": decoder,
|
|
"vqgan": vqgan,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"scheduler": scheduler,
|
|
"latent_dim_scale": 4.0,
|
|
}
|
|
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"image_embeddings": torch.ones((1, 4, 4, 4), device=device),
|
|
"prompt": "horse",
|
|
"generator": generator,
|
|
"guidance_scale": 2.0,
|
|
"num_inference_steps": 2,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_wuerstchen_decoder(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
output = pipe(**self.get_dummy_inputs(device))
|
|
image = output.images
|
|
|
|
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@skip_mps
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=1e-2)
|
|
|
|
@skip_mps
|
|
def test_attention_slicing_forward_pass(self):
|
|
test_max_difference = torch_device == "cpu"
|
|
test_mean_pixel_difference = False
|
|
|
|
self._test_attention_slicing_forward_pass(
|
|
test_max_difference=test_max_difference,
|
|
test_mean_pixel_difference=test_mean_pixel_difference,
|
|
)
|
|
|
|
@unittest.skip(reason="fp16 not supported")
|
|
def test_float16_inference(self):
|
|
super().test_float16_inference()
|
|
|
|
def test_stable_cascade_decoder_prompt_embeds(self):
|
|
device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = StableCascadeDecoderPipeline(**components)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image_embeddings = inputs["image_embeddings"]
|
|
prompt = "A photograph of a shiba inu, wearing a hat"
|
|
(
|
|
prompt_embeds,
|
|
prompt_embeds_pooled,
|
|
negative_prompt_embeds,
|
|
negative_prompt_embeds_pooled,
|
|
) = pipe.encode_prompt(device, 1, 1, False, prompt=prompt)
|
|
generator = torch.Generator(device=device)
|
|
|
|
decoder_output_prompt = pipe(
|
|
image_embeddings=image_embeddings,
|
|
prompt=prompt,
|
|
num_inference_steps=1,
|
|
output_type="np",
|
|
generator=generator.manual_seed(0),
|
|
)
|
|
decoder_output_prompt_embeds = pipe(
|
|
image_embeddings=image_embeddings,
|
|
prompt=None,
|
|
prompt_embeds=prompt_embeds,
|
|
prompt_embeds_pooled=prompt_embeds_pooled,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
|
|
num_inference_steps=1,
|
|
output_type="np",
|
|
generator=generator.manual_seed(0),
|
|
)
|
|
|
|
assert np.abs(decoder_output_prompt.images - decoder_output_prompt_embeds.images).max() < 1e-5
|
|
|
|
def test_stable_cascade_decoder_single_prompt_multiple_image_embeddings(self):
|
|
device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = StableCascadeDecoderPipeline(**components)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prior_num_images_per_prompt = 2
|
|
decoder_num_images_per_prompt = 2
|
|
prompt = ["a cat"]
|
|
batch_size = len(prompt)
|
|
|
|
generator = torch.Generator(device)
|
|
image_embeddings = randn_tensor(
|
|
(batch_size * prior_num_images_per_prompt, 4, 4, 4), generator=generator.manual_seed(0)
|
|
)
|
|
decoder_output = pipe(
|
|
image_embeddings=image_embeddings,
|
|
prompt=prompt,
|
|
num_inference_steps=1,
|
|
output_type="np",
|
|
guidance_scale=0.0,
|
|
generator=generator.manual_seed(0),
|
|
num_images_per_prompt=decoder_num_images_per_prompt,
|
|
)
|
|
|
|
assert decoder_output.images.shape[0] == (
|
|
batch_size * prior_num_images_per_prompt * decoder_num_images_per_prompt
|
|
)
|
|
|
|
def test_stable_cascade_decoder_single_prompt_multiple_image_embeddings_with_guidance(self):
|
|
device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = StableCascadeDecoderPipeline(**components)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prior_num_images_per_prompt = 2
|
|
decoder_num_images_per_prompt = 2
|
|
prompt = ["a cat"]
|
|
batch_size = len(prompt)
|
|
|
|
generator = torch.Generator(device)
|
|
image_embeddings = randn_tensor(
|
|
(batch_size * prior_num_images_per_prompt, 4, 4, 4), generator=generator.manual_seed(0)
|
|
)
|
|
decoder_output = pipe(
|
|
image_embeddings=image_embeddings,
|
|
prompt=prompt,
|
|
num_inference_steps=1,
|
|
output_type="np",
|
|
guidance_scale=2.0,
|
|
generator=generator.manual_seed(0),
|
|
num_images_per_prompt=decoder_num_images_per_prompt,
|
|
)
|
|
|
|
assert decoder_output.images.shape[0] == (
|
|
batch_size * prior_num_images_per_prompt * decoder_num_images_per_prompt
|
|
)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableCascadeDecoderPipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_stable_cascade_decoder(self):
|
|
pipe = StableCascadeDecoderPipeline.from_pretrained(
|
|
"stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
image_embedding = load_pt(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_cascade/image_embedding.pt"
|
|
)
|
|
|
|
image = pipe(
|
|
prompt=prompt,
|
|
image_embeddings=image_embedding,
|
|
output_type="np",
|
|
num_inference_steps=2,
|
|
generator=generator,
|
|
).images[0]
|
|
|
|
assert image.shape == (1024, 1024, 3)
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_cascade/stable_cascade_decoder_image.npy"
|
|
)
|
|
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
|
|
assert max_diff < 1e-4
|