mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* start printing the tensors. * print full throttle * set static slices for 7 tests. * remove printing. * flatten * disable test for controlnet * what happens when things are seeded properly? * set the right value * style./ * make pia test fail to check things * print. * fix pia. * checking for animatediff. * fix: animatediff. * video synthesis * final piece. * style. * print guess. * fix: assertion for control guess. --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
223 lines
7.2 KiB
Python
223 lines
7.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import CLIPTokenizer
|
|
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
|
|
from transformers.models.clip.configuration_clip import CLIPTextConfig
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
BlipDiffusionControlNetPipeline,
|
|
ControlNetModel,
|
|
PNDMScheduler,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
|
|
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
|
|
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
|
|
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel
|
|
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class BlipDiffusionControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = BlipDiffusionControlNetPipeline
|
|
params = [
|
|
"prompt",
|
|
"reference_image",
|
|
"source_subject_category",
|
|
"target_subject_category",
|
|
"condtioning_image",
|
|
]
|
|
batch_params = [
|
|
"prompt",
|
|
"reference_image",
|
|
"source_subject_category",
|
|
"target_subject_category",
|
|
"condtioning_image",
|
|
]
|
|
required_optional_params = [
|
|
"generator",
|
|
"height",
|
|
"width",
|
|
"latents",
|
|
"guidance_scale",
|
|
"num_inference_steps",
|
|
"neg_prompt",
|
|
"guidance_scale",
|
|
"prompt_strength",
|
|
"prompt_reps",
|
|
]
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
vocab_size=1000,
|
|
hidden_size=16,
|
|
intermediate_size=16,
|
|
projection_dim=16,
|
|
num_hidden_layers=1,
|
|
num_attention_heads=1,
|
|
max_position_embeddings=77,
|
|
)
|
|
text_encoder = ContextCLIPTextModel(text_encoder_config)
|
|
|
|
vae = AutoencoderKL(
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownEncoderBlock2D",),
|
|
up_block_types=("UpDecoderBlock2D",),
|
|
block_out_channels=(32,),
|
|
layers_per_block=1,
|
|
act_fn="silu",
|
|
latent_channels=4,
|
|
norm_num_groups=16,
|
|
sample_size=16,
|
|
)
|
|
|
|
blip_vision_config = {
|
|
"hidden_size": 16,
|
|
"intermediate_size": 16,
|
|
"num_hidden_layers": 1,
|
|
"num_attention_heads": 1,
|
|
"image_size": 224,
|
|
"patch_size": 14,
|
|
"hidden_act": "quick_gelu",
|
|
}
|
|
|
|
blip_qformer_config = {
|
|
"vocab_size": 1000,
|
|
"hidden_size": 16,
|
|
"num_hidden_layers": 1,
|
|
"num_attention_heads": 1,
|
|
"intermediate_size": 16,
|
|
"max_position_embeddings": 512,
|
|
"cross_attention_frequency": 1,
|
|
"encoder_hidden_size": 16,
|
|
}
|
|
qformer_config = Blip2Config(
|
|
vision_config=blip_vision_config,
|
|
qformer_config=blip_qformer_config,
|
|
num_query_tokens=16,
|
|
tokenizer="hf-internal-testing/tiny-random-bert",
|
|
)
|
|
qformer = Blip2QFormerModel(qformer_config)
|
|
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 16),
|
|
layers_per_block=1,
|
|
norm_num_groups=4,
|
|
sample_size=16,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=16,
|
|
)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
scheduler = PNDMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
set_alpha_to_one=False,
|
|
skip_prk_steps=True,
|
|
)
|
|
controlnet = ControlNetModel(
|
|
block_out_channels=(4, 16),
|
|
layers_per_block=1,
|
|
in_channels=4,
|
|
norm_num_groups=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=16,
|
|
conditioning_embedding_out_channels=(8, 16),
|
|
)
|
|
|
|
vae.eval()
|
|
qformer.eval()
|
|
text_encoder.eval()
|
|
|
|
image_processor = BlipImageProcessor()
|
|
|
|
components = {
|
|
"text_encoder": text_encoder,
|
|
"vae": vae,
|
|
"qformer": qformer,
|
|
"unet": unet,
|
|
"tokenizer": tokenizer,
|
|
"scheduler": scheduler,
|
|
"controlnet": controlnet,
|
|
"image_processor": image_processor,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
np.random.seed(seed)
|
|
reference_image = np.random.rand(32, 32, 3) * 255
|
|
reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA")
|
|
cond_image = np.random.rand(32, 32, 3) * 255
|
|
cond_image = Image.fromarray(cond_image.astype("uint8")).convert("RGBA")
|
|
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "swimming underwater",
|
|
"generator": generator,
|
|
"reference_image": reference_image,
|
|
"condtioning_image": cond_image,
|
|
"source_subject_category": "dog",
|
|
"target_subject_category": "dog",
|
|
"height": 32,
|
|
"width": 32,
|
|
"guidance_scale": 7.5,
|
|
"num_inference_steps": 2,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_dict_tuple_outputs_equivalent(self):
|
|
expected_slice = None
|
|
if torch_device == "cpu":
|
|
expected_slice = np.array([0.4803, 0.3865, 0.1422, 0.6119, 0.2283, 0.6365, 0.5453, 0.5205, 0.3581])
|
|
super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)
|
|
|
|
def test_blipdiffusion_controlnet(self):
|
|
device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
image = pipe(**self.get_dummy_inputs(device))[0]
|
|
image_slice = image[0, -3:, -3:, 0]
|
|
|
|
assert image.shape == (1, 16, 16, 4)
|
|
expected_slice = np.array([0.7953, 0.7136, 0.6597, 0.4779, 0.7389, 0.4111, 0.5826, 0.4150, 0.8422])
|
|
|
|
assert (
|
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
|