mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* introduce videoprocessor. * fix quality * address yiyi's feedback * fix preprocess_video call. * video_processor -> image_processor * fix * fix more. * quality * image_processor -> video_processor * support List[List[PIL.Image.Image]] * change to video_processor. * documentation * Apply suggestions from code review * changes * remove print. * refactor video processor (part # 7776) (#7861) * update * update remove deprecate * Update src/diffusers/video_processor.py * update * Apply suggestions from code review * deprecate list of 5d for video and list of 4d for image + apply other feedbacks * up --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * add doc. * tensor2vid -> postprocess_video. * refactor preprocess with preprocess_video * set default values. * empty commit * more refactoring of prepare_latents in animatediff vid2vid * checking documentation * remove documentation for now. * fix animatediff sdxl * fix test failure [part of video processor PR] (#7905) up * remove preceed_with_frames. * doc * fix * fix * remove video input as a single-frame video. --------- Co-authored-by: YiYi Xu <yixu310@gmail.com>
170 lines
7.3 KiB
Python
170 lines
7.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
from diffusers.video_processor import VideoProcessor
|
|
|
|
|
|
np.random.seed(0)
|
|
torch.manual_seed(0)
|
|
|
|
|
|
class VideoProcessorTest(unittest.TestCase):
|
|
def get_dummy_sample(self, input_type):
|
|
batch_size = 1
|
|
num_frames = 5
|
|
num_channels = 3
|
|
height = 8
|
|
width = 8
|
|
|
|
def generate_image():
|
|
return PIL.Image.fromarray(np.random.randint(0, 256, size=(height, width, num_channels)).astype("uint8"))
|
|
|
|
def generate_4d_array():
|
|
return np.random.rand(num_frames, height, width, num_channels)
|
|
|
|
def generate_5d_array():
|
|
return np.random.rand(batch_size, num_frames, height, width, num_channels)
|
|
|
|
def generate_4d_tensor():
|
|
return torch.rand(num_frames, num_channels, height, width)
|
|
|
|
def generate_5d_tensor():
|
|
return torch.rand(batch_size, num_frames, num_channels, height, width)
|
|
|
|
if input_type == "list_images":
|
|
sample = [generate_image() for _ in range(num_frames)]
|
|
elif input_type == "list_list_images":
|
|
sample = [[generate_image() for _ in range(num_frames)] for _ in range(num_frames)]
|
|
elif input_type == "list_4d_np":
|
|
sample = [generate_4d_array() for _ in range(num_frames)]
|
|
elif input_type == "list_list_4d_np":
|
|
sample = [[generate_4d_array() for _ in range(num_frames)] for _ in range(num_frames)]
|
|
elif input_type == "list_5d_np":
|
|
sample = [generate_5d_array() for _ in range(num_frames)]
|
|
elif input_type == "5d_np":
|
|
sample = generate_5d_array()
|
|
elif input_type == "list_4d_pt":
|
|
sample = [generate_4d_tensor() for _ in range(num_frames)]
|
|
elif input_type == "list_list_4d_pt":
|
|
sample = [[generate_4d_tensor() for _ in range(num_frames)] for _ in range(num_frames)]
|
|
elif input_type == "list_5d_pt":
|
|
sample = [generate_5d_tensor() for _ in range(num_frames)]
|
|
elif input_type == "5d_pt":
|
|
sample = generate_5d_tensor()
|
|
|
|
return sample
|
|
|
|
def to_np(self, video):
|
|
# List of images.
|
|
if isinstance(video[0], PIL.Image.Image):
|
|
video = np.stack([np.array(i) for i in video], axis=0)
|
|
|
|
# List of list of images.
|
|
elif isinstance(video, list) and isinstance(video[0][0], PIL.Image.Image):
|
|
frames = []
|
|
for vid in video:
|
|
all_current_frames = np.stack([np.array(i) for i in vid], axis=0)
|
|
frames.append(all_current_frames)
|
|
video = np.stack([np.array(frame) for frame in frames], axis=0)
|
|
|
|
# List of 4d/5d {ndarrays, torch tensors}.
|
|
elif isinstance(video, list) and isinstance(video[0], (torch.Tensor, np.ndarray)):
|
|
if isinstance(video[0], np.ndarray):
|
|
video = np.stack(video, axis=0) if video[0].ndim == 4 else np.concatenate(video, axis=0)
|
|
else:
|
|
if video[0].ndim == 4:
|
|
video = np.stack([i.cpu().numpy().transpose(0, 2, 3, 1) for i in video], axis=0)
|
|
elif video[0].ndim == 5:
|
|
video = np.concatenate([i.cpu().numpy().transpose(0, 1, 3, 4, 2) for i in video], axis=0)
|
|
|
|
# List of list of 4d/5d {ndarrays, torch tensors}.
|
|
elif (
|
|
isinstance(video, list)
|
|
and isinstance(video[0], list)
|
|
and isinstance(video[0][0], (torch.Tensor, np.ndarray))
|
|
):
|
|
all_frames = []
|
|
for list_of_videos in video:
|
|
temp_frames = []
|
|
for vid in list_of_videos:
|
|
if vid.ndim == 4:
|
|
current_vid_frames = np.stack(
|
|
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(1, 2, 0) for i in vid],
|
|
axis=0,
|
|
)
|
|
elif vid.ndim == 5:
|
|
current_vid_frames = np.concatenate(
|
|
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(0, 2, 3, 1) for i in vid],
|
|
axis=0,
|
|
)
|
|
temp_frames.append(current_vid_frames)
|
|
temp_frames = np.stack(temp_frames, axis=0)
|
|
all_frames.append(temp_frames)
|
|
|
|
video = np.concatenate(all_frames, axis=0)
|
|
|
|
# Just 5d {ndarrays, torch tensors}.
|
|
elif isinstance(video, (torch.Tensor, np.ndarray)) and video.ndim == 5:
|
|
video = video if isinstance(video, np.ndarray) else video.cpu().numpy().transpose(0, 1, 3, 4, 2)
|
|
|
|
return video
|
|
|
|
@parameterized.expand(["list_images", "list_list_images"])
|
|
def test_video_processor_pil(self, input_type):
|
|
video_processor = VideoProcessor(do_resize=False, do_normalize=True)
|
|
|
|
input = self.get_dummy_sample(input_type=input_type)
|
|
|
|
for output_type in ["pt", "np", "pil"]:
|
|
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type)
|
|
out_np = self.to_np(out)
|
|
input_np = self.to_np(input).astype("float32") / 255.0 if output_type != "pil" else self.to_np(input)
|
|
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}"
|
|
|
|
@parameterized.expand(["list_4d_np", "list_5d_np", "5d_np"])
|
|
def test_video_processor_np(self, input_type):
|
|
video_processor = VideoProcessor(do_resize=False, do_normalize=True)
|
|
|
|
input = self.get_dummy_sample(input_type=input_type)
|
|
|
|
for output_type in ["pt", "np", "pil"]:
|
|
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type)
|
|
out_np = self.to_np(out)
|
|
input_np = (
|
|
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input)
|
|
)
|
|
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}"
|
|
|
|
@parameterized.expand(["list_4d_pt", "list_5d_pt", "5d_pt"])
|
|
def test_video_processor_pt(self, input_type):
|
|
video_processor = VideoProcessor(do_resize=False, do_normalize=True)
|
|
|
|
input = self.get_dummy_sample(input_type=input_type)
|
|
|
|
for output_type in ["pt", "np", "pil"]:
|
|
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type)
|
|
out_np = self.to_np(out)
|
|
input_np = (
|
|
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input)
|
|
)
|
|
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}"
|