mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* up * add sd3 * update * update * add tests * fix copies * fix docs * update * add dreambooth lora * add LoRA * update * update * update * update * import fix * update * Update src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * import fix 2 * update * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/models/autoencoders/autoencoder_kl.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * update * update * update * fix ckpt id * fix more ids * update * missing doc * Update src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/stable_diffusion_3.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * Update docs/source/en/api/pipelines/stable_diffusion/stable_diffusion_3.md Co-authored-by: Sayak Paul <spsayakpaul@gmail.com> * update' * fix * update * Update src/diffusers/models/autoencoders/autoencoder_kl.py * Update src/diffusers/models/autoencoders/autoencoder_kl.py * note on gated access. * requirements * licensing --------- Co-authored-by: sayakpaul <spsayakpaul@gmail.com> Co-authored-by: YiYi Xu <yixu310@gmail.com>
79 lines
2.4 KiB
Python
79 lines
2.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import SD3Transformer2DModel
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
torch_device,
|
|
)
|
|
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = SD3Transformer2DModel
|
|
main_input_name = "hidden_states"
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_channels = 4
|
|
height = width = embedding_dim = 32
|
|
pooled_embedding_dim = embedding_dim * 2
|
|
sequence_length = 154
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
|
pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
|
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"pooled_projections": pooled_prompt_embeds,
|
|
"timestep": timestep,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"sample_size": 32,
|
|
"patch_size": 1,
|
|
"in_channels": 4,
|
|
"num_layers": 1,
|
|
"attention_head_dim": 8,
|
|
"num_attention_heads": 4,
|
|
"caption_projection_dim": 32,
|
|
"joint_attention_dim": 32,
|
|
"pooled_projection_dim": 64,
|
|
"out_channels": 4,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|