mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
406 lines
16 KiB
Python
406 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
SD3Transformer2DModel,
|
|
StableDiffusion3Pipeline,
|
|
)
|
|
from diffusers.utils.testing_utils import is_peft_available, require_peft_backend, require_torch_gpu, torch_device
|
|
|
|
|
|
if is_peft_available():
|
|
from peft import LoraConfig
|
|
from peft.utils import get_peft_model_state_dict
|
|
|
|
sys.path.append(".")
|
|
|
|
from utils import check_if_lora_correctly_set # noqa: E402
|
|
|
|
|
|
@require_peft_backend
|
|
class SD3LoRATests(unittest.TestCase):
|
|
pipeline_class = StableDiffusion3Pipeline
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = SD3Transformer2DModel(
|
|
sample_size=32,
|
|
patch_size=1,
|
|
in_channels=4,
|
|
num_layers=1,
|
|
attention_head_dim=8,
|
|
num_attention_heads=4,
|
|
caption_projection_dim=32,
|
|
joint_attention_dim=32,
|
|
pooled_projection_dim=64,
|
|
out_channels=4,
|
|
)
|
|
clip_text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
block_out_channels=(4,),
|
|
layers_per_block=1,
|
|
latent_channels=4,
|
|
norm_num_groups=1,
|
|
use_quant_conv=False,
|
|
use_post_quant_conv=False,
|
|
shift_factor=0.0609,
|
|
scaling_factor=1.5035,
|
|
)
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler()
|
|
|
|
return {
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"text_encoder_2": text_encoder_2,
|
|
"text_encoder_3": text_encoder_3,
|
|
"tokenizer": tokenizer,
|
|
"tokenizer_2": tokenizer_2,
|
|
"tokenizer_3": tokenizer_3,
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
}
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def get_lora_config_for_transformer(self):
|
|
lora_config = LoraConfig(
|
|
r=4,
|
|
lora_alpha=4,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=False,
|
|
)
|
|
return lora_config
|
|
|
|
def get_lora_config_for_text_encoders(self):
|
|
text_lora_config = LoraConfig(
|
|
r=4,
|
|
lora_alpha=4,
|
|
init_lora_weights="gaussian",
|
|
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
|
|
)
|
|
return text_lora_config
|
|
|
|
def test_simple_inference_with_transformer_lora_save_load(self):
|
|
components = self.get_dummy_components()
|
|
transformer_config = self.get_lora_config_for_transformer()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.transformer.add_adapter(transformer_config)
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
images_lora = pipe(**inputs).images
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
transformer_state_dict = get_peft_model_state_dict(pipe.transformer)
|
|
|
|
self.pipeline_class.save_lora_weights(
|
|
save_directory=tmpdirname,
|
|
transformer_lora_layers=transformer_state_dict,
|
|
)
|
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
|
|
pipe.unload_lora_weights()
|
|
|
|
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
images_lora_from_pretrained = pipe(**inputs).images
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
|
|
self.assertTrue(
|
|
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
|
|
"Loading from saved checkpoints should give same results.",
|
|
)
|
|
|
|
def test_simple_inference_with_clip_encoders_lora_save_load(self):
|
|
components = self.get_dummy_components()
|
|
transformer_config = self.get_lora_config_for_transformer()
|
|
text_encoder_config = self.get_lora_config_for_text_encoders()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
pipe.transformer.add_adapter(transformer_config)
|
|
pipe.text_encoder.add_adapter(text_encoder_config)
|
|
pipe.text_encoder_2.add_adapter(text_encoder_config)
|
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder.")
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2.")
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
images_lora = pipe(**inputs).images
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
transformer_state_dict = get_peft_model_state_dict(pipe.transformer)
|
|
text_encoder_one_state_dict = get_peft_model_state_dict(pipe.text_encoder)
|
|
text_encoder_two_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
|
|
|
|
self.pipeline_class.save_lora_weights(
|
|
save_directory=tmpdirname,
|
|
transformer_lora_layers=transformer_state_dict,
|
|
text_encoder_lora_layers=text_encoder_one_state_dict,
|
|
text_encoder_2_lora_layers=text_encoder_two_state_dict,
|
|
)
|
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
|
|
pipe.unload_lora_weights()
|
|
|
|
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
images_lora_from_pretrained = pipe(**inputs).images
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text_encoder_one")
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text_encoder_two")
|
|
|
|
self.assertTrue(
|
|
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
|
|
"Loading from saved checkpoints should give same results.",
|
|
)
|
|
|
|
def test_simple_inference_with_transformer_lora_and_scale(self):
|
|
components = self.get_dummy_components()
|
|
transformer_lora_config = self.get_lora_config_for_transformer()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_no_lora = pipe(**inputs).images
|
|
|
|
pipe.transformer.add_adapter(transformer_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_lora = pipe(**inputs).images
|
|
self.assertTrue(
|
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_lora_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.5}).images
|
|
self.assertTrue(
|
|
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
|
|
"Lora + scale should change the output",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_lora_0_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.0}).images
|
|
self.assertTrue(
|
|
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
|
|
"Lora + 0 scale should lead to same result as no LoRA",
|
|
)
|
|
|
|
def test_simple_inference_with_clip_encoders_lora_and_scale(self):
|
|
components = self.get_dummy_components()
|
|
transformer_lora_config = self.get_lora_config_for_transformer()
|
|
text_encoder_config = self.get_lora_config_for_text_encoders()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_no_lora = pipe(**inputs).images
|
|
|
|
pipe.transformer.add_adapter(transformer_lora_config)
|
|
pipe.text_encoder.add_adapter(text_encoder_config)
|
|
pipe.text_encoder_2.add_adapter(text_encoder_config)
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text_encoder_one")
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text_encoder_two")
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_lora = pipe(**inputs).images
|
|
self.assertTrue(
|
|
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_lora_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.5}).images
|
|
self.assertTrue(
|
|
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
|
|
"Lora + scale should change the output",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_lora_0_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.0}).images
|
|
self.assertTrue(
|
|
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
|
|
"Lora + 0 scale should lead to same result as no LoRA",
|
|
)
|
|
|
|
def test_simple_inference_with_transformer_fused(self):
|
|
components = self.get_dummy_components()
|
|
transformer_lora_config = self.get_lora_config_for_transformer()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_no_lora = pipe(**inputs).images
|
|
|
|
pipe.transformer.add_adapter(transformer_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
|
|
pipe.fuse_lora()
|
|
# Fusing should still keep the LoRA layers
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
ouput_fused = pipe(**inputs).images
|
|
self.assertFalse(
|
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
|
|
)
|
|
|
|
def test_simple_inference_with_transformer_fused_with_no_fusion(self):
|
|
components = self.get_dummy_components()
|
|
transformer_lora_config = self.get_lora_config_for_transformer()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_no_lora = pipe(**inputs).images
|
|
|
|
pipe.transformer.add_adapter(transformer_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
ouput_lora = pipe(**inputs).images
|
|
|
|
pipe.fuse_lora()
|
|
# Fusing should still keep the LoRA layers
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
ouput_fused = pipe(**inputs).images
|
|
self.assertFalse(
|
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
|
|
)
|
|
self.assertTrue(
|
|
np.allclose(ouput_fused, ouput_lora, atol=1e-3, rtol=1e-3),
|
|
"Fused lora output should be changed when LoRA isn't fused but still effective.",
|
|
)
|
|
|
|
def test_simple_inference_with_transformer_fuse_unfuse(self):
|
|
components = self.get_dummy_components()
|
|
transformer_lora_config = self.get_lora_config_for_transformer()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_no_lora = pipe(**inputs).images
|
|
|
|
pipe.transformer.add_adapter(transformer_lora_config)
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
|
|
pipe.fuse_lora()
|
|
# Fusing should still keep the LoRA layers
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
ouput_fused = pipe(**inputs).images
|
|
self.assertFalse(
|
|
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
|
|
)
|
|
|
|
pipe.unfuse_lora()
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_unfused_lora = pipe(**inputs).images
|
|
self.assertTrue(
|
|
np.allclose(ouput_fused, output_unfused_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
|
|
)
|
|
|
|
@require_torch_gpu
|
|
def test_sd3_lora(self):
|
|
"""
|
|
Test loading the loras that are saved with the diffusers and peft formats.
|
|
Related PR: https://github.com/huggingface/diffusers/pull/8584
|
|
"""
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
lora_model_id = "hf-internal-testing/tiny-sd3-loras"
|
|
|
|
lora_filename = "lora_diffusers_format.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
|
pipe.unload_lora_weights()
|
|
|
|
lora_filename = "lora_peft_format.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|