1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/examples/wuerstchen/text_to_image/modeling_efficient_net_encoder.py
Kashif Rasul d03c9099bc [Wuerstchen] text to image training script (#5052)
* initial script

* formatting

* prior trainer wip

* add efficient_net_encoder

* add CLIPTextModel

* add prior ema support

* optimizer

* fix typo

* add dataloader

* prompt_embeds and image_embeds

* intial training loop

* fix output_dir

* fix add_noise

* accelerator check

* make effnet_transforms dynamic

* fix training loop

* add validation logging

* use loaded text_encoder

* use PreTrainedTokenizerFast

* load weigth from pickle

* save_model_card

* remove unused file

* fix typos

* save prior pipeilne in its own folder

* fix imports

* fix pipe_t2i

* scale image_embeds

* remove snr_gamma

* format

* initial lora prior training

* log_validation and save

* initial gradient working

* remove save/load hooks

* set set_attn_processor on prior_prior

* add lora script

* typos

* use LoraLoaderMixin for prior pipeline

* fix usage

* make fix-copies

* yse repo_id

* write_lora_layers is a staitcmethod

* use defualts

* fix defaults

* undo

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add graident checkpoint support to prior

* gradient_checkpointing

* formatting

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/loaders.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/train_text_to_image_prior.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* use default unet and text_encoder

* fix test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-10-16 15:00:33 +02:00

24 lines
881 B
Python

import torch.nn as nn
from torchvision.models import efficientnet_v2_l, efficientnet_v2_s
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
class EfficientNetEncoder(ModelMixin, ConfigMixin):
@register_to_config
def __init__(self, c_latent=16, c_cond=1280, effnet="efficientnet_v2_s"):
super().__init__()
if effnet == "efficientnet_v2_s":
self.backbone = efficientnet_v2_s(weights="DEFAULT").features
else:
self.backbone = efficientnet_v2_l(weights="DEFAULT").features
self.mapper = nn.Sequential(
nn.Conv2d(c_cond, c_latent, kernel_size=1, bias=False),
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
)
def forward(self, x):
return self.mapper(self.backbone(x))