mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* find & replace all FloatTensors to Tensor * apply formatting * Update torch.FloatTensor to torch.Tensor in the remaining files * formatting * Fix the rest of the places where FloatTensor is used as well as in documentation * formatting * Update new file from FloatTensor to Tensor
150 lines
5.8 KiB
Python
150 lines
5.8 KiB
Python
from typing import List, Optional, Tuple, Union
|
||
|
||
import torch
|
||
|
||
from diffusers import DiffusionPipeline
|
||
from diffusers.configuration_utils import ConfigMixin
|
||
from diffusers.pipelines.pipeline_utils import ImagePipelineOutput
|
||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||
|
||
|
||
class IADBScheduler(SchedulerMixin, ConfigMixin):
|
||
"""
|
||
IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist.
|
||
|
||
For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html
|
||
"""
|
||
|
||
def step(
|
||
self,
|
||
model_output: torch.Tensor,
|
||
timestep: int,
|
||
x_alpha: torch.Tensor,
|
||
) -> torch.Tensor:
|
||
"""
|
||
Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion
|
||
process from the learned model outputs (most often the predicted noise).
|
||
|
||
Args:
|
||
model_output (`torch.Tensor`): direct output from learned diffusion model. It is the direction from x0 to x1.
|
||
timestep (`float`): current timestep in the diffusion chain.
|
||
x_alpha (`torch.Tensor`): x_alpha sample for the current timestep
|
||
|
||
Returns:
|
||
`torch.Tensor`: the sample at the previous timestep
|
||
|
||
"""
|
||
if self.num_inference_steps is None:
|
||
raise ValueError(
|
||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||
)
|
||
|
||
alpha = timestep / self.num_inference_steps
|
||
alpha_next = (timestep + 1) / self.num_inference_steps
|
||
|
||
d = model_output
|
||
|
||
x_alpha = x_alpha + (alpha_next - alpha) * d
|
||
|
||
return x_alpha
|
||
|
||
def set_timesteps(self, num_inference_steps: int):
|
||
self.num_inference_steps = num_inference_steps
|
||
|
||
def add_noise(
|
||
self,
|
||
original_samples: torch.Tensor,
|
||
noise: torch.Tensor,
|
||
alpha: torch.Tensor,
|
||
) -> torch.Tensor:
|
||
return original_samples * alpha + noise * (1 - alpha)
|
||
|
||
def __len__(self):
|
||
return self.config.num_train_timesteps
|
||
|
||
|
||
class IADBPipeline(DiffusionPipeline):
|
||
r"""
|
||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||
|
||
Parameters:
|
||
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
|
||
scheduler ([`SchedulerMixin`]):
|
||
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
||
[`DDPMScheduler`], or [`DDIMScheduler`].
|
||
"""
|
||
|
||
def __init__(self, unet, scheduler):
|
||
super().__init__()
|
||
|
||
self.register_modules(unet=unet, scheduler=scheduler)
|
||
|
||
@torch.no_grad()
|
||
def __call__(
|
||
self,
|
||
batch_size: int = 1,
|
||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||
num_inference_steps: int = 50,
|
||
output_type: Optional[str] = "pil",
|
||
return_dict: bool = True,
|
||
) -> Union[ImagePipelineOutput, Tuple]:
|
||
r"""
|
||
Args:
|
||
batch_size (`int`, *optional*, defaults to 1):
|
||
The number of images to generate.
|
||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||
expense of slower inference.
|
||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||
The output format of the generate image. Choose between
|
||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||
return_dict (`bool`, *optional*, defaults to `True`):
|
||
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
||
|
||
Returns:
|
||
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
|
||
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
|
||
"""
|
||
|
||
# Sample gaussian noise to begin loop
|
||
if isinstance(self.unet.config.sample_size, int):
|
||
image_shape = (
|
||
batch_size,
|
||
self.unet.config.in_channels,
|
||
self.unet.config.sample_size,
|
||
self.unet.config.sample_size,
|
||
)
|
||
else:
|
||
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
|
||
|
||
if isinstance(generator, list) and len(generator) != batch_size:
|
||
raise ValueError(
|
||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||
)
|
||
|
||
image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype)
|
||
|
||
# set step values
|
||
self.scheduler.set_timesteps(num_inference_steps)
|
||
x_alpha = image.clone()
|
||
for t in self.progress_bar(range(num_inference_steps)):
|
||
alpha = t / num_inference_steps
|
||
|
||
# 1. predict noise model_output
|
||
model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample
|
||
|
||
# 2. step
|
||
x_alpha = self.scheduler.step(model_output, t, x_alpha)
|
||
|
||
image = (x_alpha * 0.5 + 0.5).clamp(0, 1)
|
||
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
||
if output_type == "pil":
|
||
image = self.numpy_to_pil(image)
|
||
|
||
if not return_dict:
|
||
return (image,)
|
||
|
||
return ImagePipelineOutput(images=image)
|