mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
1201 lines
44 KiB
Python
1201 lines
44 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import tempfile
|
|
import traceback
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
ControlNetModel,
|
|
DDIMScheduler,
|
|
EulerDiscreteScheduler,
|
|
LCMScheduler,
|
|
StableDiffusionControlNetPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
get_python_version,
|
|
load_image,
|
|
load_numpy,
|
|
numpy_cosine_similarity_distance,
|
|
require_python39_or_higher,
|
|
require_torch_2,
|
|
require_torch_gpu,
|
|
run_test_in_subprocess,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from ..pipeline_params import (
|
|
IMAGE_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_TO_IMAGE_BATCH_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_TO_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import (
|
|
IPAdapterTesterMixin,
|
|
PipelineKarrasSchedulerTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineTesterMixin,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
# Will be run via run_test_in_subprocess
|
|
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
|
|
error = None
|
|
try:
|
|
_ = in_queue.get(timeout=timeout)
|
|
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.to("cuda")
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.unet.to(memory_format=torch.channels_last)
|
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
|
pipe.controlnet.to(memory_format=torch.channels_last)
|
|
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "bird"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
).resize((512, 512))
|
|
|
|
output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np")
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
|
|
)
|
|
expected_image = np.resize(expected_image, (512, 512, 3))
|
|
|
|
assert np.abs(expected_image - image).max() < 1.0
|
|
|
|
except Exception:
|
|
error = f"{traceback.format_exc()}"
|
|
|
|
results = {"error": error}
|
|
out_queue.put(results, timeout=timeout)
|
|
out_queue.join()
|
|
|
|
|
|
class ControlNetPipelineFastTests(
|
|
IPAdapterTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineKarrasSchedulerTesterMixin,
|
|
PipelineTesterMixin,
|
|
unittest.TestCase,
|
|
):
|
|
pipeline_class = StableDiffusionControlNetPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
norm_num_groups=1,
|
|
time_cond_proj_dim=time_cond_proj_dim,
|
|
)
|
|
torch.manual_seed(0)
|
|
controlnet = ControlNetModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
norm_num_groups=1,
|
|
)
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[4, 8],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"controlnet": controlnet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
controlnet_embedder_scale_factor = 2
|
|
image = randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
)
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
"image": image,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
|
|
|
|
def test_ip_adapter_single(self):
|
|
expected_pipe_slice = None
|
|
if torch_device == "cpu":
|
|
expected_pipe_slice = np.array([0.5234, 0.3333, 0.1745, 0.7605, 0.6224, 0.4637, 0.6989, 0.7526, 0.4665])
|
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|
|
|
|
def test_controlnet_lcm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionControlNetPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_controlnet_lcm_custom_timesteps(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionControlNetPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
del inputs["num_inference_steps"]
|
|
inputs["timesteps"] = [999, 499]
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
class StableDiffusionMultiControlNetPipelineFastTests(
|
|
IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionControlNetPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
norm_num_groups=1,
|
|
)
|
|
torch.manual_seed(0)
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, torch.nn.Conv2d):
|
|
torch.nn.init.normal_(m.weight)
|
|
m.bias.data.fill_(1.0)
|
|
|
|
controlnet1 = ControlNetModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
norm_num_groups=1,
|
|
)
|
|
controlnet1.controlnet_down_blocks.apply(init_weights)
|
|
|
|
torch.manual_seed(0)
|
|
controlnet2 = ControlNetModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
norm_num_groups=1,
|
|
)
|
|
controlnet2.controlnet_down_blocks.apply(init_weights)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[4, 8],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
controlnet = MultiControlNetModel([controlnet1, controlnet2])
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"controlnet": controlnet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
controlnet_embedder_scale_factor = 2
|
|
|
|
images = [
|
|
randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
),
|
|
randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
),
|
|
]
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
"image": images,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_control_guidance_switch(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
|
|
scale = 10.0
|
|
steps = 4
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_1 = pipe(**inputs)[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]
|
|
|
|
# make sure that all outputs are different
|
|
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
|
|
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
|
|
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|
|
|
|
def test_ip_adapter_single(self):
|
|
expected_pipe_slice = None
|
|
if torch_device == "cpu":
|
|
expected_pipe_slice = np.array([0.2422, 0.3425, 0.4048, 0.5351, 0.3503, 0.2419, 0.4645, 0.4570, 0.3804])
|
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)
|
|
|
|
def test_save_pretrained_raise_not_implemented_exception(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
try:
|
|
# save_pretrained is not implemented for Multi-ControlNet
|
|
pipe.save_pretrained(tmpdir)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
def test_inference_multiple_prompt_input(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionControlNetPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
|
|
inputs["image"] = [inputs["image"], inputs["image"]]
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
assert image.shape == (2, 64, 64, 3)
|
|
|
|
image_1, image_2 = image
|
|
# make sure that the outputs are different
|
|
assert np.sum(np.abs(image_1 - image_2)) > 1e-3
|
|
|
|
# multiple prompts, single image conditioning
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
|
|
output_1 = sd_pipe(**inputs)
|
|
|
|
assert np.abs(image - output_1.images).max() < 1e-3
|
|
|
|
# multiple prompts, multiple image conditioning
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["prompt"] = [inputs["prompt"], inputs["prompt"], inputs["prompt"], inputs["prompt"]]
|
|
inputs["image"] = [inputs["image"], inputs["image"], inputs["image"], inputs["image"]]
|
|
output_2 = sd_pipe(**inputs)
|
|
image = output_2.images
|
|
|
|
assert image.shape == (4, 64, 64, 3)
|
|
|
|
|
|
class StableDiffusionMultiControlNetOneModelPipelineFastTests(
|
|
IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionControlNetPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
norm_num_groups=1,
|
|
)
|
|
torch.manual_seed(0)
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, torch.nn.Conv2d):
|
|
torch.nn.init.normal_(m.weight)
|
|
m.bias.data.fill_(1.0)
|
|
|
|
controlnet = ControlNetModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
norm_num_groups=1,
|
|
)
|
|
controlnet.controlnet_down_blocks.apply(init_weights)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[4, 8],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
controlnet = MultiControlNetModel([controlnet])
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"controlnet": controlnet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
controlnet_embedder_scale_factor = 2
|
|
|
|
images = [
|
|
randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
),
|
|
]
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
"image": images,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_control_guidance_switch(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
|
|
scale = 10.0
|
|
steps = 4
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_1 = pipe(**inputs)[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_3 = pipe(
|
|
**inputs,
|
|
control_guidance_start=[0.1],
|
|
control_guidance_end=[0.2],
|
|
)[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]
|
|
|
|
# make sure that all outputs are different
|
|
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
|
|
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
|
|
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|
|
|
|
def test_ip_adapter_single(self):
|
|
expected_pipe_slice = None
|
|
if torch_device == "cpu":
|
|
expected_pipe_slice = np.array([0.5264, 0.3203, 0.1602, 0.8235, 0.6332, 0.4593, 0.7226, 0.7777, 0.4780])
|
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)
|
|
|
|
def test_save_pretrained_raise_not_implemented_exception(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
try:
|
|
# save_pretrained is not implemented for Multi-ControlNet
|
|
pipe.save_pretrained(tmpdir)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class ControlNetPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_canny(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "bird"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (768, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 9e-2
|
|
|
|
def test_depth(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "Stormtrooper's lecture"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 8e-1
|
|
|
|
def test_hed(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "oil painting of handsome old man, masterpiece"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (704, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 8e-2
|
|
|
|
def test_mlsd(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "room"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (704, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 5e-2
|
|
|
|
def test_normal(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "cute toy"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 5e-2
|
|
|
|
def test_openpose(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "Chef in the kitchen"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (768, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 8e-2
|
|
|
|
def test_scribble(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(5)
|
|
prompt = "bag"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (640, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 8e-2
|
|
|
|
def test_seg(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(5)
|
|
prompt = "house"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
|
|
)
|
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 8e-2
|
|
|
|
def test_sequential_cpu_offloading(self):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
prompt = "house"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
|
|
)
|
|
|
|
_ = pipe(
|
|
prompt,
|
|
image,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
# make sure that less than 7 GB is allocated
|
|
assert mem_bytes < 4 * 10**9
|
|
|
|
def test_canny_guess_mode(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = ""
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
)
|
|
|
|
output = pipe(
|
|
prompt,
|
|
image,
|
|
generator=generator,
|
|
output_type="np",
|
|
num_inference_steps=3,
|
|
guidance_scale=3.0,
|
|
guess_mode=True,
|
|
)
|
|
|
|
image = output.images[0]
|
|
assert image.shape == (768, 512, 3)
|
|
|
|
image_slice = image[-3:, -3:, -1]
|
|
expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_canny_guess_mode_euler(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = ""
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
)
|
|
|
|
output = pipe(
|
|
prompt,
|
|
image,
|
|
generator=generator,
|
|
output_type="np",
|
|
num_inference_steps=3,
|
|
guidance_scale=3.0,
|
|
guess_mode=True,
|
|
)
|
|
|
|
image = output.images[0]
|
|
assert image.shape == (768, 512, 3)
|
|
|
|
image_slice = image[-3:, -3:, -1]
|
|
expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@require_python39_or_higher
|
|
@require_torch_2
|
|
@unittest.skipIf(
|
|
get_python_version == (3, 12),
|
|
reason="Torch Dynamo isn't yet supported for Python 3.12.",
|
|
)
|
|
def test_stable_diffusion_compile(self):
|
|
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)
|
|
|
|
def test_v11_shuffle_global_pool_conditions(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "New York"
|
|
image = load_image(
|
|
"https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"
|
|
)
|
|
|
|
output = pipe(
|
|
prompt,
|
|
image,
|
|
generator=generator,
|
|
output_type="np",
|
|
num_inference_steps=3,
|
|
guidance_scale=7.0,
|
|
)
|
|
|
|
image = output.images[0]
|
|
assert image.shape == (512, 640, 3)
|
|
|
|
image_slice = image[-3:, -3:, -1]
|
|
expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_load_local(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
controlnet = ControlNetModel.from_single_file(
|
|
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
|
|
)
|
|
pipe_sf = StableDiffusionControlNetPipeline.from_single_file(
|
|
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
|
|
safety_checker=None,
|
|
controlnet=controlnet,
|
|
scheduler_type="pndm",
|
|
)
|
|
pipe_sf.unet.set_default_attn_processor()
|
|
pipe_sf.enable_model_cpu_offload()
|
|
|
|
control_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
).resize((512, 512))
|
|
prompt = "bird"
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
output = pipe(
|
|
prompt,
|
|
image=control_image,
|
|
generator=generator,
|
|
output_type="np",
|
|
num_inference_steps=3,
|
|
).images[0]
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
output_sf = pipe_sf(
|
|
prompt,
|
|
image=control_image,
|
|
generator=generator,
|
|
output_type="np",
|
|
num_inference_steps=3,
|
|
).images[0]
|
|
|
|
max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten())
|
|
assert max_diff < 1e-3
|
|
|
|
def test_single_file_component_configs(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16")
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", variant="fp16", safety_checker=None, controlnet=controlnet
|
|
)
|
|
|
|
controlnet_single_file = ControlNetModel.from_single_file(
|
|
"https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
|
|
)
|
|
single_file_pipe = StableDiffusionControlNetPipeline.from_single_file(
|
|
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
|
|
safety_checker=None,
|
|
controlnet=controlnet_single_file,
|
|
scheduler_type="pndm",
|
|
)
|
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "architectures", "_use_default_values"]
|
|
for param_name, param_value in single_file_pipe.controlnet.config.items():
|
|
if param_name in PARAMS_TO_IGNORE:
|
|
continue
|
|
|
|
# This parameter doesn't appear to be loaded from the config.
|
|
# So when it is registered to config, it remains a tuple as this is the default in the class definition
|
|
# from_pretrained, does load from config and converts to a list when registering to config
|
|
if param_name == "conditioning_embedding_out_channels" and isinstance(param_value, tuple):
|
|
param_value = list(param_value)
|
|
|
|
assert (
|
|
pipe.controlnet.config[param_name] == param_value
|
|
), f"{param_name} differs between single file loading and pretrained loading"
|
|
|
|
for param_name, param_value in single_file_pipe.unet.config.items():
|
|
if param_name in PARAMS_TO_IGNORE:
|
|
continue
|
|
assert (
|
|
pipe.unet.config[param_name] == param_value
|
|
), f"{param_name} differs between single file loading and pretrained loading"
|
|
|
|
for param_name, param_value in single_file_pipe.vae.config.items():
|
|
if param_name in PARAMS_TO_IGNORE:
|
|
continue
|
|
assert (
|
|
pipe.vae.config[param_name] == param_value
|
|
), f"{param_name} differs between single file loading and pretrained loading"
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_pose_and_canny(self):
|
|
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
|
controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
|
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny]
|
|
)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "bird and Chef"
|
|
image_canny = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
)
|
|
image_pose = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
|
|
)
|
|
|
|
output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (768, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 5e-2
|