mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* 7529 do not disable autocast for cuda devices * Remove typecasting error check for non-mps platforms, as a correct autocast implementation makes it a non-issue * add autocast fix to other training examples * disable native_amp for dreambooth (sdxl) * disable native_amp for pix2pix (sdxl) * remove tests from remaining files * disable native_amp on huggingface accelerator for every training example that uses it * convert more usages of autocast to nullcontext, make style fixes * make style fixes * style. * Empty-Commit --------- Co-authored-by: bghira <bghira@users.github.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
976 lines
37 KiB
Python
976 lines
37 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import copy
|
|
import logging
|
|
import math
|
|
import os
|
|
import shutil
|
|
from contextlib import nullcontext
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import ProjectConfiguration, set_seed
|
|
from datasets import load_dataset
|
|
from peft import LoraConfig
|
|
from peft.utils import get_peft_model_state_dict
|
|
from PIL import Image
|
|
from PIL.ImageOps import exif_transpose
|
|
from torch.utils.data import DataLoader, Dataset, default_collate
|
|
from torchvision import transforms
|
|
from transformers import (
|
|
CLIPTextModelWithProjection,
|
|
CLIPTokenizer,
|
|
)
|
|
|
|
import diffusers.optimization
|
|
from diffusers import AmusedPipeline, AmusedScheduler, EMAModel, UVit2DModel, VQModel
|
|
from diffusers.loaders import LoraLoaderMixin
|
|
from diffusers.utils import is_wandb_available
|
|
|
|
|
|
if is_wandb_available():
|
|
import wandb
|
|
|
|
logger = get_logger(__name__, log_level="INFO")
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--variant",
|
|
type=str,
|
|
default=None,
|
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_data_dataset",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="A Hugging Face dataset containing the training images",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_data_dir",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="A folder containing the training data of instance images.",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_data_image", type=str, default=None, required=False, help="A single training image"
|
|
)
|
|
parser.add_argument(
|
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
|
)
|
|
parser.add_argument(
|
|
"--dataloader_num_workers",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--allow_tf32",
|
|
action="store_true",
|
|
help=(
|
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
|
),
|
|
)
|
|
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
|
parser.add_argument("--ema_decay", type=float, default=0.9999)
|
|
parser.add_argument("--ema_update_after_step", type=int, default=0)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="muse_training",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=500,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
|
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
|
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
|
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
|
"instructions."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--logging_steps",
|
|
type=int,
|
|
default=50,
|
|
)
|
|
parser.add_argument(
|
|
"--checkpoints_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help=(
|
|
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
|
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
|
" for more details"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=0.0003,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument(
|
|
"--validation_steps",
|
|
type=int,
|
|
default=100,
|
|
help=(
|
|
"Run validation every X steps. Validation consists of running the prompt"
|
|
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
|
" and logging the images."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default=None,
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="wandb",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
|
),
|
|
)
|
|
parser.add_argument("--validation_prompts", type=str, nargs="*")
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=512,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
|
|
parser.add_argument("--min_masking_rate", type=float, default=0.0)
|
|
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
|
|
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.", required=False)
|
|
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
|
|
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
|
|
parser.add_argument("--lora_r", default=16, type=int)
|
|
parser.add_argument("--lora_alpha", default=32, type=int)
|
|
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
|
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
|
|
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
|
|
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
|
parser.add_argument("--train_text_encoder", action="store_true")
|
|
parser.add_argument("--image_key", type=str, required=False)
|
|
parser.add_argument("--prompt_key", type=str, required=False)
|
|
parser.add_argument(
|
|
"--gradient_checkpointing",
|
|
action="store_true",
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
|
)
|
|
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.report_to == "wandb":
|
|
if not is_wandb_available():
|
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
|
|
|
num_datasources = sum(
|
|
[x is not None for x in [args.instance_data_dir, args.instance_data_image, args.instance_data_dataset]]
|
|
)
|
|
|
|
if num_datasources != 1:
|
|
raise ValueError(
|
|
"provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`"
|
|
)
|
|
|
|
if args.instance_data_dir is not None:
|
|
if not os.path.exists(args.instance_data_dir):
|
|
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
|
|
|
|
if args.instance_data_image is not None:
|
|
if not os.path.exists(args.instance_data_image):
|
|
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}")
|
|
|
|
if args.instance_data_dataset is not None and (args.image_key is None or args.prompt_key is None):
|
|
raise ValueError("`--instance_data_dataset` requires setting `--image_key` and `--prompt_key`")
|
|
|
|
return args
|
|
|
|
|
|
class InstanceDataRootDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
instance_data_root,
|
|
tokenizer,
|
|
size=512,
|
|
):
|
|
self.size = size
|
|
self.tokenizer = tokenizer
|
|
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
|
|
|
def __len__(self):
|
|
return len(self.instance_images_path)
|
|
|
|
def __getitem__(self, index):
|
|
image_path = self.instance_images_path[index % len(self.instance_images_path)]
|
|
instance_image = Image.open(image_path)
|
|
rv = process_image(instance_image, self.size)
|
|
|
|
prompt = os.path.splitext(os.path.basename(image_path))[0]
|
|
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]
|
|
return rv
|
|
|
|
|
|
class InstanceDataImageDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
instance_data_image,
|
|
train_batch_size,
|
|
size=512,
|
|
):
|
|
self.value = process_image(Image.open(instance_data_image), size)
|
|
self.train_batch_size = train_batch_size
|
|
|
|
def __len__(self):
|
|
# Needed so a full batch of the data can be returned. Otherwise will return
|
|
# batches of size 1
|
|
return self.train_batch_size
|
|
|
|
def __getitem__(self, index):
|
|
return self.value
|
|
|
|
|
|
class HuggingFaceDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
hf_dataset,
|
|
tokenizer,
|
|
image_key,
|
|
prompt_key,
|
|
prompt_prefix=None,
|
|
size=512,
|
|
):
|
|
self.size = size
|
|
self.image_key = image_key
|
|
self.prompt_key = prompt_key
|
|
self.tokenizer = tokenizer
|
|
self.hf_dataset = hf_dataset
|
|
self.prompt_prefix = prompt_prefix
|
|
|
|
def __len__(self):
|
|
return len(self.hf_dataset)
|
|
|
|
def __getitem__(self, index):
|
|
item = self.hf_dataset[index]
|
|
|
|
rv = process_image(item[self.image_key], self.size)
|
|
|
|
prompt = item[self.prompt_key]
|
|
|
|
if self.prompt_prefix is not None:
|
|
prompt = self.prompt_prefix + prompt
|
|
|
|
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]
|
|
|
|
return rv
|
|
|
|
|
|
def process_image(image, size):
|
|
image = exif_transpose(image)
|
|
|
|
if not image.mode == "RGB":
|
|
image = image.convert("RGB")
|
|
|
|
orig_height = image.height
|
|
orig_width = image.width
|
|
|
|
image = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)(image)
|
|
|
|
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(size, size))
|
|
image = transforms.functional.crop(image, c_top, c_left, size, size)
|
|
|
|
image = transforms.ToTensor()(image)
|
|
|
|
micro_conds = torch.tensor(
|
|
[orig_width, orig_height, c_top, c_left, 6.0],
|
|
)
|
|
|
|
return {"image": image, "micro_conds": micro_conds}
|
|
|
|
|
|
def tokenize_prompt(tokenizer, prompt):
|
|
return tokenizer(
|
|
prompt,
|
|
truncation=True,
|
|
padding="max_length",
|
|
max_length=77,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
|
|
|
|
def encode_prompt(text_encoder, input_ids):
|
|
outputs = text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
|
encoder_hidden_states = outputs.hidden_states[-2]
|
|
cond_embeds = outputs[0]
|
|
return encoder_hidden_states, cond_embeds
|
|
|
|
|
|
def main(args):
|
|
if args.allow_tf32:
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir)
|
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
|
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with=args.report_to,
|
|
project_config=accelerator_project_config,
|
|
)
|
|
# Disable AMP for MPS.
|
|
if torch.backends.mps.is_available():
|
|
accelerator.native_amp = False
|
|
|
|
if accelerator.is_main_process:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
|
|
if accelerator.is_main_process:
|
|
accelerator.init_trackers("amused", config=vars(copy.deepcopy(args)))
|
|
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# TODO - will have to fix loading if training text encoder
|
|
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
|
)
|
|
tokenizer = CLIPTokenizer.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant
|
|
)
|
|
vq_model = VQModel.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
|
|
)
|
|
|
|
if args.train_text_encoder:
|
|
if args.text_encoder_use_lora:
|
|
lora_config = LoraConfig(
|
|
r=args.text_encoder_lora_r,
|
|
lora_alpha=args.text_encoder_lora_alpha,
|
|
target_modules=args.text_encoder_lora_target_modules,
|
|
)
|
|
text_encoder.add_adapter(lora_config)
|
|
text_encoder.train()
|
|
text_encoder.requires_grad_(True)
|
|
else:
|
|
text_encoder.eval()
|
|
text_encoder.requires_grad_(False)
|
|
|
|
vq_model.requires_grad_(False)
|
|
|
|
model = UVit2DModel.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="transformer",
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
)
|
|
|
|
if args.use_lora:
|
|
lora_config = LoraConfig(
|
|
r=args.lora_r,
|
|
lora_alpha=args.lora_alpha,
|
|
target_modules=args.lora_target_modules,
|
|
)
|
|
model.add_adapter(lora_config)
|
|
|
|
model.train()
|
|
|
|
if args.gradient_checkpointing:
|
|
model.enable_gradient_checkpointing()
|
|
if args.train_text_encoder:
|
|
text_encoder.gradient_checkpointing_enable()
|
|
|
|
if args.use_ema:
|
|
ema = EMAModel(
|
|
model.parameters(),
|
|
decay=args.ema_decay,
|
|
update_after_step=args.ema_update_after_step,
|
|
model_cls=UVit2DModel,
|
|
model_config=model.config,
|
|
)
|
|
|
|
def save_model_hook(models, weights, output_dir):
|
|
if accelerator.is_main_process:
|
|
transformer_lora_layers_to_save = None
|
|
text_encoder_lora_layers_to_save = None
|
|
|
|
for model_ in models:
|
|
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
|
if args.use_lora:
|
|
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
|
|
else:
|
|
model_.save_pretrained(os.path.join(output_dir, "transformer"))
|
|
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
|
if args.text_encoder_use_lora:
|
|
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
|
|
else:
|
|
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
|
|
else:
|
|
raise ValueError(f"unexpected save model: {model_.__class__}")
|
|
|
|
# make sure to pop weight so that corresponding model is not saved again
|
|
weights.pop()
|
|
|
|
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
|
|
LoraLoaderMixin.save_lora_weights(
|
|
output_dir,
|
|
transformer_lora_layers=transformer_lora_layers_to_save,
|
|
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
|
|
)
|
|
|
|
if args.use_ema:
|
|
ema.save_pretrained(os.path.join(output_dir, "ema_model"))
|
|
|
|
def load_model_hook(models, input_dir):
|
|
transformer = None
|
|
text_encoder_ = None
|
|
|
|
while len(models) > 0:
|
|
model_ = models.pop()
|
|
|
|
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
|
if args.use_lora:
|
|
transformer = model_
|
|
else:
|
|
load_model = UVit2DModel.from_pretrained(os.path.join(input_dir, "transformer"))
|
|
model_.load_state_dict(load_model.state_dict())
|
|
del load_model
|
|
elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
|
|
if args.text_encoder_use_lora:
|
|
text_encoder_ = model_
|
|
else:
|
|
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
|
|
model_.load_state_dict(load_model.state_dict())
|
|
del load_model
|
|
else:
|
|
raise ValueError(f"unexpected save model: {model.__class__}")
|
|
|
|
if transformer is not None or text_encoder_ is not None:
|
|
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
|
LoraLoaderMixin.load_lora_into_text_encoder(
|
|
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
|
|
)
|
|
LoraLoaderMixin.load_lora_into_transformer(
|
|
lora_state_dict, network_alphas=network_alphas, transformer=transformer
|
|
)
|
|
|
|
if args.use_ema:
|
|
load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=UVit2DModel)
|
|
ema.load_state_dict(load_from.state_dict())
|
|
del load_from
|
|
|
|
accelerator.register_load_state_pre_hook(load_model_hook)
|
|
accelerator.register_save_state_pre_hook(save_model_hook)
|
|
|
|
if args.scale_lr:
|
|
args.learning_rate = (
|
|
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
)
|
|
|
|
if args.use_8bit_adam:
|
|
try:
|
|
import bitsandbytes as bnb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
|
)
|
|
|
|
optimizer_cls = bnb.optim.AdamW8bit
|
|
else:
|
|
optimizer_cls = torch.optim.AdamW
|
|
|
|
# no decay on bias and layernorm and embedding
|
|
no_decay = ["bias", "layer_norm.weight", "mlm_ln.weight", "embeddings.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": args.adam_weight_decay,
|
|
},
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.0,
|
|
},
|
|
]
|
|
|
|
if args.train_text_encoder:
|
|
optimizer_grouped_parameters.append(
|
|
{"params": text_encoder.parameters(), "weight_decay": args.adam_weight_decay}
|
|
)
|
|
|
|
optimizer = optimizer_cls(
|
|
optimizer_grouped_parameters,
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
logger.info("Creating dataloaders and lr_scheduler")
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
if args.instance_data_dir is not None:
|
|
dataset = InstanceDataRootDataset(
|
|
instance_data_root=args.instance_data_dir,
|
|
tokenizer=tokenizer,
|
|
size=args.resolution,
|
|
)
|
|
elif args.instance_data_image is not None:
|
|
dataset = InstanceDataImageDataset(
|
|
instance_data_image=args.instance_data_image,
|
|
train_batch_size=args.train_batch_size,
|
|
size=args.resolution,
|
|
)
|
|
elif args.instance_data_dataset is not None:
|
|
dataset = HuggingFaceDataset(
|
|
hf_dataset=load_dataset(args.instance_data_dataset, split="train"),
|
|
tokenizer=tokenizer,
|
|
image_key=args.image_key,
|
|
prompt_key=args.prompt_key,
|
|
prompt_prefix=args.prompt_prefix,
|
|
size=args.resolution,
|
|
)
|
|
else:
|
|
assert False
|
|
|
|
train_dataloader = DataLoader(
|
|
dataset,
|
|
batch_size=args.train_batch_size,
|
|
shuffle=True,
|
|
num_workers=args.dataloader_num_workers,
|
|
collate_fn=default_collate,
|
|
)
|
|
train_dataloader.num_batches = len(train_dataloader)
|
|
|
|
lr_scheduler = diffusers.optimization.get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
|
)
|
|
|
|
logger.info("Preparing model, optimizer and dataloaders")
|
|
|
|
if args.train_text_encoder:
|
|
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare(
|
|
model, optimizer, lr_scheduler, train_dataloader, text_encoder
|
|
)
|
|
else:
|
|
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
|
|
model, optimizer, lr_scheduler, train_dataloader
|
|
)
|
|
|
|
train_dataloader.num_batches = len(train_dataloader)
|
|
|
|
weight_dtype = torch.float32
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
|
|
if not args.train_text_encoder:
|
|
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
|
|
|
vq_model.to(device=accelerator.device)
|
|
|
|
if args.use_ema:
|
|
ema.to(accelerator.device)
|
|
|
|
with nullcontext() if args.train_text_encoder else torch.no_grad():
|
|
empty_embeds, empty_clip_embeds = encode_prompt(
|
|
text_encoder, tokenize_prompt(tokenizer, "").to(text_encoder.device, non_blocking=True)
|
|
)
|
|
|
|
# There is a single image, we can just pre-encode the single prompt
|
|
if args.instance_data_image is not None:
|
|
prompt = os.path.splitext(os.path.basename(args.instance_data_image))[0]
|
|
encoder_hidden_states, cond_embeds = encode_prompt(
|
|
text_encoder, tokenize_prompt(tokenizer, prompt).to(text_encoder.device, non_blocking=True)
|
|
)
|
|
encoder_hidden_states = encoder_hidden_states.repeat(args.train_batch_size, 1, 1)
|
|
cond_embeds = cond_embeds.repeat(args.train_batch_size, 1)
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
|
|
# Afterwards we recalculate our number of training epochs.
|
|
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
|
|
# reuse the same training loop with other datasets/loaders.
|
|
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# Train!
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num training steps = {args.max_train_steps}")
|
|
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
|
|
resume_from_checkpoint = args.resume_from_checkpoint
|
|
if resume_from_checkpoint:
|
|
if resume_from_checkpoint == "latest":
|
|
# Get the most recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
if len(dirs) > 0:
|
|
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
|
|
else:
|
|
resume_from_checkpoint = None
|
|
|
|
if resume_from_checkpoint is None:
|
|
accelerator.print(
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
|
)
|
|
else:
|
|
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
|
|
|
|
if resume_from_checkpoint is None:
|
|
global_step = 0
|
|
first_epoch = 0
|
|
else:
|
|
accelerator.load_state(resume_from_checkpoint)
|
|
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
|
|
first_epoch = global_step // num_update_steps_per_epoch
|
|
|
|
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
|
|
# reuse the same training loop with other datasets/loaders.
|
|
for epoch in range(first_epoch, num_train_epochs):
|
|
for batch in train_dataloader:
|
|
with torch.no_grad():
|
|
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
|
|
pixel_values = batch["image"].to(accelerator.device, non_blocking=True)
|
|
|
|
batch_size = pixel_values.shape[0]
|
|
|
|
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
|
|
num_splits = math.ceil(batch_size / split_batch_size)
|
|
image_tokens = []
|
|
for i in range(num_splits):
|
|
start_idx = i * split_batch_size
|
|
end_idx = min((i + 1) * split_batch_size, batch_size)
|
|
bs = pixel_values.shape[0]
|
|
image_tokens.append(
|
|
vq_model.quantize(vq_model.encode(pixel_values[start_idx:end_idx]).latents)[2][2].reshape(
|
|
bs, -1
|
|
)
|
|
)
|
|
image_tokens = torch.cat(image_tokens, dim=0)
|
|
|
|
batch_size, seq_len = image_tokens.shape
|
|
|
|
timesteps = torch.rand(batch_size, device=image_tokens.device)
|
|
mask_prob = torch.cos(timesteps * math.pi * 0.5)
|
|
mask_prob = mask_prob.clip(args.min_masking_rate)
|
|
|
|
num_token_masked = (seq_len * mask_prob).round().clamp(min=1)
|
|
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
|
|
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
|
|
|
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
|
|
input_ids = torch.where(mask, mask_id, image_tokens)
|
|
labels = torch.where(mask, image_tokens, -100)
|
|
|
|
if args.cond_dropout_prob > 0.0:
|
|
assert encoder_hidden_states is not None
|
|
|
|
batch_size = encoder_hidden_states.shape[0]
|
|
|
|
mask = (
|
|
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
|
|
< args.cond_dropout_prob
|
|
)
|
|
|
|
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
|
|
encoder_hidden_states = torch.where(
|
|
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
|
|
)
|
|
|
|
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
|
|
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)
|
|
|
|
bs = input_ids.shape[0]
|
|
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
|
|
resolution = args.resolution // vae_scale_factor
|
|
input_ids = input_ids.reshape(bs, resolution, resolution)
|
|
|
|
if "prompt_input_ids" in batch:
|
|
with nullcontext() if args.train_text_encoder else torch.no_grad():
|
|
encoder_hidden_states, cond_embeds = encode_prompt(
|
|
text_encoder, batch["prompt_input_ids"].to(accelerator.device, non_blocking=True)
|
|
)
|
|
|
|
# Train Step
|
|
with accelerator.accumulate(model):
|
|
codebook_size = accelerator.unwrap_model(model).config.codebook_size
|
|
|
|
logits = (
|
|
model(
|
|
input_ids=input_ids,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
micro_conds=micro_conds,
|
|
pooled_text_emb=cond_embeds,
|
|
)
|
|
.reshape(bs, codebook_size, -1)
|
|
.permute(0, 2, 1)
|
|
.reshape(-1, codebook_size)
|
|
)
|
|
|
|
loss = F.cross_entropy(
|
|
logits,
|
|
labels.view(-1),
|
|
ignore_index=-100,
|
|
reduction="mean",
|
|
)
|
|
|
|
# Gather the losses across all processes for logging (if we use distributed training).
|
|
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
|
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean()
|
|
|
|
accelerator.backward(loss)
|
|
|
|
if args.max_grad_norm is not None and accelerator.sync_gradients:
|
|
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
|
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
if args.use_ema:
|
|
ema.step(model.parameters())
|
|
|
|
if (global_step + 1) % args.logging_steps == 0:
|
|
logs = {
|
|
"step_loss": avg_loss.item(),
|
|
"lr": lr_scheduler.get_last_lr()[0],
|
|
"avg_masking_rate": avg_masking_rate.item(),
|
|
}
|
|
accelerator.log(logs, step=global_step + 1)
|
|
|
|
logger.info(
|
|
f"Step: {global_step + 1} "
|
|
f"Loss: {avg_loss.item():0.4f} "
|
|
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
|
|
)
|
|
|
|
if (global_step + 1) % args.checkpointing_steps == 0:
|
|
save_checkpoint(args, accelerator, global_step + 1)
|
|
|
|
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
|
|
if args.use_ema:
|
|
ema.store(model.parameters())
|
|
ema.copy_to(model.parameters())
|
|
|
|
with torch.no_grad():
|
|
logger.info("Generating images...")
|
|
|
|
model.eval()
|
|
|
|
if args.train_text_encoder:
|
|
text_encoder.eval()
|
|
|
|
scheduler = AmusedScheduler.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="scheduler",
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
)
|
|
|
|
pipe = AmusedPipeline(
|
|
transformer=accelerator.unwrap_model(model),
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
vqvae=vq_model,
|
|
scheduler=scheduler,
|
|
)
|
|
|
|
pil_images = pipe(prompt=args.validation_prompts).images
|
|
wandb_images = [
|
|
wandb.Image(image, caption=args.validation_prompts[i])
|
|
for i, image in enumerate(pil_images)
|
|
]
|
|
|
|
wandb.log({"generated_images": wandb_images}, step=global_step + 1)
|
|
|
|
model.train()
|
|
|
|
if args.train_text_encoder:
|
|
text_encoder.train()
|
|
|
|
if args.use_ema:
|
|
ema.restore(model.parameters())
|
|
|
|
global_step += 1
|
|
|
|
# Stop training if max steps is reached
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
# End for
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
# Evaluate and save checkpoint at the end of training
|
|
save_checkpoint(args, accelerator, global_step)
|
|
|
|
# Save the final trained checkpoint
|
|
if accelerator.is_main_process:
|
|
model = accelerator.unwrap_model(model)
|
|
if args.use_ema:
|
|
ema.copy_to(model.parameters())
|
|
model.save_pretrained(args.output_dir)
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
def save_checkpoint(args, accelerator, global_step):
|
|
output_dir = args.output_dir
|
|
|
|
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
|
if accelerator.is_main_process and args.checkpoints_total_limit is not None:
|
|
checkpoints = os.listdir(output_dir)
|
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
|
|
|
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
|
if len(checkpoints) >= args.checkpoints_total_limit:
|
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
|
removing_checkpoints = checkpoints[0:num_to_remove]
|
|
|
|
logger.info(
|
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
|
)
|
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
|
|
|
for removing_checkpoint in removing_checkpoints:
|
|
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
|
|
shutil.rmtree(removing_checkpoint)
|
|
|
|
save_path = Path(output_dir) / f"checkpoint-{global_step}"
|
|
accelerator.save_state(save_path)
|
|
logger.info(f"Saved state to {save_path}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main(parse_args())
|