1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/debug_conversion.py
Arthur f794432e81 Conversion script for ncsnpp models (#98)
* added kwargs for easier intialisation of random model

* initial commit for conversion script

* current debug script

* update

* Update

* done

* add updated debug conversion script

* style

* clean conversion script
2022-07-19 12:19:36 +02:00

111 lines
4.0 KiB
Python
Executable File

#!/usr/bin/env python3
import json
import os
from regex import P
from diffusers import UNetUnconditionalModel
from scripts.convert_ncsnpp_original_checkpoint_to_diffusers import convert_ncsnpp_checkpoint
from huggingface_hub import hf_hub_download
import torch
def convert_checkpoint(model_id, subfolder=None, checkpoint = "diffusion_model.pt", config = "config.json"):
if subfolder is not None:
checkpoint = os.path.join(subfolder, checkpoint)
config = os.path.join(subfolder, config)
original_checkpoint = torch.load(hf_hub_download(model_id, checkpoint),map_location='cpu')
config_path = hf_hub_download(model_id, config)
with open(config_path) as f:
config = json.load(f)
checkpoint = convert_ncsnpp_checkpoint(original_checkpoint, config)
def current_codebase_conversion(path):
model = UNetUnconditionalModel.from_pretrained(model_id, subfolder=subfolder, sde=True)
model.eval()
model.config.sde=False
model.save_config(path)
model.config.sde=True
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
time_step = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
output = model(noise, time_step)
return model.state_dict()
path = f"{model_id}_converted"
currently_converted_checkpoint = current_codebase_conversion(path)
def diff_between_checkpoints(ch_0, ch_1):
all_layers_included = False
if not set(ch_0.keys()) == set(ch_1.keys()):
print(f"Contained in ch_0 and not in ch_1 (Total: {len((set(ch_0.keys()) - set(ch_1.keys())))})")
for key in sorted(list((set(ch_0.keys()) - set(ch_1.keys())))):
print(f"\t{key}")
print(f"Contained in ch_1 and not in ch_0 (Total: {len((set(ch_1.keys()) - set(ch_0.keys())))})")
for key in sorted(list((set(ch_1.keys()) - set(ch_0.keys())))):
print(f"\t{key}")
else:
print("Keys are the same between the two checkpoints")
all_layers_included = True
keys = ch_0.keys()
non_equal_keys = []
if all_layers_included:
for key in keys:
try:
if not torch.allclose(ch_0[key].cpu(), ch_1[key].cpu()):
non_equal_keys.append(f'{key}. Diff: {torch.max(torch.abs(ch_0[key].cpu() - ch_1[key].cpu()))}')
except RuntimeError as e:
print(e)
non_equal_keys.append(f'{key}. Diff in shape: {ch_0[key].size()} vs {ch_1[key].size()}')
if len(non_equal_keys):
non_equal_keys = '\n\t'.join(non_equal_keys)
print(f"These keys do not satisfy equivalence requirement:\n\t{non_equal_keys}")
else:
print("All keys are equal across checkpoints.")
diff_between_checkpoints(currently_converted_checkpoint, checkpoint)
os.makedirs( f"{model_id}_converted",exist_ok =True)
torch.save(checkpoint, f"{model_id}_converted/diffusion_model.pt")
model_ids = ["fusing/ffhq_ncsnpp","fusing/church_256-ncsnpp-ve", "fusing/celebahq_256-ncsnpp-ve",
"fusing/bedroom_256-ncsnpp-ve","fusing/ffhq_256-ncsnpp-ve","fusing/ncsnpp-ffhq-ve-dummy"
]
for model in model_ids:
print(f"converting {model}")
try:
convert_checkpoint(model)
except Exception as e:
print(e)
from tests.test_modeling_utils import PipelineTesterMixin, NCSNppModelTests
tester1 = NCSNppModelTests()
tester2 = PipelineTesterMixin()
os.environ["RUN_SLOW"] = '1'
cmd = "export RUN_SLOW=1; echo $RUN_SLOW" # or whatever command
os.system(cmd)
tester2.test_score_sde_ve_pipeline(f"{model_ids[0]}_converted")
tester1.test_output_pretrained_ve_mid(f"{model_ids[2]}_converted")
tester1.test_output_pretrained_ve_large(f"{model_ids[-1]}_converted")