mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Add CycleDiffusion pipeline for Stable Diffusion * Add the option of passing noise to DDIMScheduler Add the option of providing the noise itself to DDIMScheduler, instead of the random seed generator. * Update README.md * Update README.md * Update pipeline_stable_diffusion_cycle_diffusion.py * Update pipeline_stable_diffusion_cycle_diffusion.py * Update pipeline_stable_diffusion_cycle_diffusion.py * Update pipeline_stable_diffusion_cycle_diffusion.py * Update scheduling_ddim.py * Update import format * Update pipeline_stable_diffusion_cycle_diffusion.py * Update scheduling_ddim.py * Update src/diffusers/schedulers/scheduling_ddim.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/schedulers/scheduling_ddim.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/schedulers/scheduling_ddim.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/schedulers/scheduling_ddim.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Update src/diffusers/schedulers/scheduling_ddim.py Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * Update scheduling_ddim.py * Update scheduling_ddim.py * Update scheduling_ddim.py * add two tests * Update pipeline_stable_diffusion_cycle_diffusion.py * Update pipeline_stable_diffusion_cycle_diffusion.py * Update README.md * Rename pipeline name as suggested in the latest reviewer comment * Update test_pipelines.py * Update test_pipelines.py * Update test_pipelines.py * Update pipeline_stable_diffusion_cycle_diffusion.py * Remove the generator This generator does not control all randomness during sampling, which can be misleading. * Update optimal hyperparameters * Update src/diffusers/pipelines/stable_diffusion/README.md Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/README.md Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update src/diffusers/pipelines/stable_diffusion/README.md Co-authored-by: Suraj Patil <surajp815@gmail.com> * Apply suggestions from code review * uP * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_cycle_diffusion.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * up * up * Replace assert with ValueError * finish docs Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Suraj Patil <surajp815@gmail.com>
53 lines
5.1 KiB
Plaintext
53 lines
5.1 KiB
Plaintext
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
-->
|
|
|
|
<p align="center">
|
|
<br>
|
|
<img src="https://raw.githubusercontent.com/huggingface/diffusers/77aadfee6a891ab9fcfb780f87c693f7a5beeb8e/docs/source/imgs/diffusers_library.jpg" width="400"/>
|
|
<br>
|
|
</p>
|
|
|
|
# 𧨠Diffusers
|
|
|
|
π€ Diffusers provides pretrained vision diffusion models, and serves as a modular toolbox for inference and training.
|
|
|
|
More precisely, π€ Diffusers offers:
|
|
|
|
- State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [**Using Diffusers**](./using-diffusers/conditional_image_generation)) or have a look at [**Pipelines**](#pipelines) to get an overview of all supported pipelines and their corresponding papers.
|
|
- Various noise schedulers that can be used interchangeably for the preferred speed vs. quality trade-off in inference. For more information see [**Schedulers**](./api/schedulers).
|
|
- Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system. See [**Models**](./api/models) for more details
|
|
- Training examples to show how to train the most popular diffusion model tasks. For more information see [**Training**](./training/overview).
|
|
|
|
## 𧨠Diffusers Pipelines
|
|
|
|
The following table summarizes all officially supported pipelines, their corresponding paper, and if
|
|
available a colab notebook to directly try them out.
|
|
|
|
| Pipeline | Paper | Tasks | Colab
|
|
|---|---|:---:|:---:|
|
|
| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
|
|
| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
|
|
| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
|
|
| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
|
|
| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
|
|
| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
|
|
| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
|
|
| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
|
|
| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
|
|
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
|
|
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
|
|
| [stable_diffusion](./api/pipelines/stable_diffusion) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
|
|
| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
|
|
| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
|
|
|
|
**Note**: Pipelines are simple examples of how to play around with the diffusion systems as described in the corresponding papers.
|