mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* ⚙️chore(train_controlnet) fix typo in logger message * ⚙️chore(models) refactor modules order; make them the same as calling order When printing the BasicTransformerBlock to stdout, I think it's crucial that the attributes order are shown in proper order. And also previously the "3. Feed Forward" comment was not making sense. It should have been close to self.ff but it's instead next to self.norm3 * correct many tests * remove bogus file * make style * correct more tests * finish tests * fix one more * make style * make unclip deterministic * ⚙️chore(models/attention) reorganize comments in BasicTransformerBlock class --------- Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
471 lines
18 KiB
Python
471 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMInverseScheduler,
|
|
DDIMScheduler,
|
|
DDPMScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
StableDiffusionPix2PixZeroPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils import load_numpy, slow, torch_device
|
|
from diffusers.utils.testing_utils import load_image, load_pt, require_torch_gpu, skip_mps
|
|
|
|
from ...pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
@skip_mps
|
|
class StableDiffusionPix2PixZeroPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = StableDiffusionPix2PixZeroPipeline
|
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
|
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.source_embeds = load_pt(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/src_emb_0.pt"
|
|
)
|
|
|
|
cls.target_embeds = load_pt(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/tgt_emb_0.pt"
|
|
)
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DDIMScheduler()
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"inverse_scheduler": None,
|
|
"caption_generator": None,
|
|
"caption_processor": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"cross_attention_guidance_amount": 0.15,
|
|
"source_embeds": self.source_embeds,
|
|
"target_embeds": self.target_embeds,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_pix2pix_zero_default_case(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.4863, 0.5053, 0.5033, 0.4007, 0.3571, 0.4768, 0.5176, 0.5277, 0.4940])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_pix2pix_zero_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "french fries"
|
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.5177, 0.5097, 0.5047, 0.4076, 0.3667, 0.4767, 0.5238, 0.5307, 0.4958])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_pix2pix_zero_euler(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = EulerAncestralDiscreteScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
|
|
)
|
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.5421, 0.5525, 0.6085, 0.5279, 0.4658, 0.5317, 0.4418, 0.4815, 0.5132])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_pix2pix_zero_ddpm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = DDPMScheduler()
|
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.4861, 0.5053, 0.5038, 0.3994, 0.3562, 0.4768, 0.5172, 0.5280, 0.4938])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
# Non-determinism caused by the scheduler optimizing the latent inputs during inference
|
|
@unittest.skip("non-deterministic pipeline")
|
|
def test_inference_batch_single_identical(self):
|
|
return super().test_inference_batch_single_identical()
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableDiffusionPix2PixZeroPipelineSlowTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.source_embeds = load_pt(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat.pt"
|
|
)
|
|
|
|
cls.target_embeds = load_pt(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.pt"
|
|
)
|
|
|
|
def get_inputs(self, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": "turn him into a cyborg",
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"cross_attention_guidance_amount": 0.15,
|
|
"source_embeds": self.source_embeds,
|
|
"target_embeds": self.target_embeds,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_pix2pix_zero_default(self):
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.5742, 0.5757, 0.5747, 0.5781, 0.5688, 0.5713, 0.5742, 0.5664, 0.5747])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2
|
|
|
|
def test_stable_diffusion_pix2pix_zero_k_lms(self):
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.6367, 0.5459, 0.5146, 0.5479, 0.4905, 0.4753, 0.4961, 0.4629, 0.4624])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2
|
|
|
|
def test_stable_diffusion_pix2pix_zero_intermediate_state(self):
|
|
number_of_steps = 0
|
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
|
|
callback_fn.has_been_called = True
|
|
nonlocal number_of_steps
|
|
number_of_steps += 1
|
|
if step == 1:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array([0.1345, 0.268, 0.1539, 0.0726, 0.0959, 0.2261, -0.2673, 0.0277, -0.2062])
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
|
|
elif step == 2:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array([0.1393, 0.2637, 0.1617, 0.0724, 0.0987, 0.2271, -0.2666, 0.0299, -0.2104])
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
|
|
|
|
callback_fn.has_been_called = False
|
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
pipe(**inputs, callback=callback_fn, callback_steps=1)
|
|
assert callback_fn.has_been_called
|
|
assert number_of_steps == 3
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
inputs = self.get_inputs()
|
|
_ = pipe(**inputs)
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
# make sure that less than 8.2 GB is allocated
|
|
assert mem_bytes < 8.2 * 10**9
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class InversionPipelineSlowTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
raw_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png"
|
|
)
|
|
|
|
raw_image = raw_image.convert("RGB").resize((512, 512))
|
|
|
|
cls.raw_image = raw_image
|
|
|
|
def test_stable_diffusion_pix2pix_inversion(self):
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
|
|
|
caption = "a photography of a cat with flowers"
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10)
|
|
inv_latents = output[0]
|
|
|
|
image_slice = inv_latents[0, -3:, -3:, -1].flatten()
|
|
|
|
assert inv_latents.shape == (1, 4, 64, 64)
|
|
expected_slice = np.array([0.8447, -0.0730, 0.7588, -1.2070, -0.4678, 0.1511, -0.8555, 1.1816, -0.7666])
|
|
|
|
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2
|
|
|
|
def test_stable_diffusion_2_pix2pix_inversion(self):
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
|
|
|
caption = "a photography of a cat with flowers"
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10)
|
|
inv_latents = output[0]
|
|
|
|
image_slice = inv_latents[0, -3:, -3:, -1].flatten()
|
|
|
|
assert inv_latents.shape == (1, 4, 64, 64)
|
|
expected_slice = np.array([0.8970, -0.1611, 0.4766, -1.1162, -0.5923, 0.1050, -0.9678, 1.0537, -0.6050])
|
|
|
|
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2
|
|
|
|
def test_stable_diffusion_pix2pix_full(self):
|
|
# numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog.png
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.npy"
|
|
)
|
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
|
|
|
caption = "a photography of a cat with flowers"
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe.invert(caption, image=self.raw_image, generator=generator)
|
|
inv_latents = output[0]
|
|
|
|
source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
|
|
target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
|
|
|
|
source_embeds = pipe.get_embeds(source_prompts)
|
|
target_embeds = pipe.get_embeds(target_prompts)
|
|
|
|
image = pipe(
|
|
caption,
|
|
source_embeds=source_embeds,
|
|
target_embeds=target_embeds,
|
|
num_inference_steps=50,
|
|
cross_attention_guidance_amount=0.15,
|
|
generator=generator,
|
|
latents=inv_latents,
|
|
negative_prompt=caption,
|
|
output_type="np",
|
|
).images
|
|
|
|
max_diff = np.abs(expected_image - image).mean()
|
|
assert max_diff < 0.05
|
|
|
|
def test_stable_diffusion_2_pix2pix_full(self):
|
|
# numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog_2.png
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog_2.npy"
|
|
)
|
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
|
|
|
|
caption = "a photography of a cat with flowers"
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe.invert(caption, image=self.raw_image, generator=generator)
|
|
inv_latents = output[0]
|
|
|
|
source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
|
|
target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
|
|
|
|
source_embeds = pipe.get_embeds(source_prompts)
|
|
target_embeds = pipe.get_embeds(target_prompts)
|
|
|
|
image = pipe(
|
|
caption,
|
|
source_embeds=source_embeds,
|
|
target_embeds=target_embeds,
|
|
num_inference_steps=125,
|
|
cross_attention_guidance_amount=0.015,
|
|
generator=generator,
|
|
latents=inv_latents,
|
|
negative_prompt=caption,
|
|
output_type="np",
|
|
).images
|
|
|
|
mean_diff = np.abs(expected_image - image).mean()
|
|
assert mean_diff < 0.25
|