mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* fix: norm group test for UNet3D. * chore: speed up the panorama tests (fast). * set default value of _test_inference_batch_single_identical. * fix: batch_sizes default value.
349 lines
12 KiB
Python
349 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionPanoramaPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils import slow, torch_device
|
|
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
|
|
|
|
from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
@skip_mps
|
|
class StableDiffusionPanoramaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = StableDiffusionPanoramaPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=1,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DDIMScheduler()
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "a photo of the dolomites",
|
|
"generator": generator,
|
|
# Setting height and width to None to prevent OOMs on CPU.
|
|
"height": None,
|
|
"width": None,
|
|
"num_inference_steps": 1,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_panorama_default_case(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPanoramaPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
# override to speed the overall test timing up.
|
|
def test_inference_batch_consistent(self):
|
|
super().test_inference_batch_consistent(batch_sizes=[1, 2])
|
|
|
|
# override to speed the overall test timing up.
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(batch_size=2)
|
|
|
|
def test_stable_diffusion_panorama_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPanoramaPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "french fries"
|
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_panorama_euler(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = EulerAncestralDiscreteScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
|
|
)
|
|
sd_pipe = StableDiffusionPanoramaPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.4886, 0.5586, 0.4476, 0.5053, 0.6013, 0.4737, 0.5538, 0.5100, 0.4927])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_panorama_pndm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = PNDMScheduler()
|
|
sd_pipe = StableDiffusionPanoramaPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
# the pipeline does not expect pndm so test if it raises error.
|
|
with self.assertRaises(ValueError):
|
|
_ = sd_pipe(**inputs).images
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableDiffusionPanoramaSlowTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_inputs(self, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "a photo of the dolomites",
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_panorama_default(self):
|
|
model_ckpt = "stabilityai/stable-diffusion-2-base"
|
|
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
|
|
pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 2048, 3)
|
|
|
|
expected_slice = np.array(
|
|
[
|
|
0.36968392,
|
|
0.27025372,
|
|
0.32446766,
|
|
0.28379387,
|
|
0.36363274,
|
|
0.30733347,
|
|
0.27100027,
|
|
0.27054125,
|
|
0.25536096,
|
|
]
|
|
)
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_panorama_k_lms(self):
|
|
pipe = StableDiffusionPanoramaPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-2-base", safety_checker=None
|
|
)
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 2048, 3)
|
|
|
|
expected_slice = np.array(
|
|
[
|
|
[
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
0.0,
|
|
]
|
|
]
|
|
)
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_panorama_intermediate_state(self):
|
|
number_of_steps = 0
|
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
|
|
callback_fn.has_been_called = True
|
|
nonlocal number_of_steps
|
|
number_of_steps += 1
|
|
if step == 1:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 256)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
|
|
expected_slice = np.array(
|
|
[
|
|
0.18681869,
|
|
0.33907816,
|
|
0.5361276,
|
|
0.14432865,
|
|
-0.02856611,
|
|
-0.73941123,
|
|
0.23397987,
|
|
0.47322682,
|
|
-0.37823164,
|
|
]
|
|
)
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
|
|
elif step == 2:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 256)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
|
|
expected_slice = np.array(
|
|
[
|
|
0.18539645,
|
|
0.33987248,
|
|
0.5378559,
|
|
0.14437142,
|
|
-0.02455261,
|
|
-0.7338317,
|
|
0.23990755,
|
|
0.47356272,
|
|
-0.3786505,
|
|
]
|
|
)
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
|
|
|
|
callback_fn.has_been_called = False
|
|
|
|
model_ckpt = "stabilityai/stable-diffusion-2-base"
|
|
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
|
|
pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
pipe(**inputs, callback=callback_fn, callback_steps=1)
|
|
assert callback_fn.has_been_called
|
|
assert number_of_steps == 3
|
|
|
|
def test_stable_diffusion_panorama_pipeline_with_sequential_cpu_offloading(self):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
model_ckpt = "stabilityai/stable-diffusion-2-base"
|
|
scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder="scheduler")
|
|
pipe = StableDiffusionPanoramaPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
inputs = self.get_inputs()
|
|
_ = pipe(**inputs)
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
# make sure that less than 5.2 GB is allocated
|
|
assert mem_bytes < 5.5 * 10**9
|