mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
1377 lines
55 KiB
Python
1377 lines
55 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import gc
|
|
import tempfile
|
|
import time
|
|
import traceback
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
LCMScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
logging,
|
|
)
|
|
from diffusers.models.attention_processor import AttnProcessor
|
|
from diffusers.utils.testing_utils import (
|
|
CaptureLogger,
|
|
enable_full_determinism,
|
|
load_image,
|
|
load_numpy,
|
|
nightly,
|
|
numpy_cosine_similarity_distance,
|
|
require_python39_or_higher,
|
|
require_torch_2,
|
|
require_torch_gpu,
|
|
run_test_in_subprocess,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ..pipeline_params import (
|
|
TEXT_TO_IMAGE_BATCH_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_TO_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
# Will be run via run_test_in_subprocess
|
|
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
|
|
error = None
|
|
try:
|
|
inputs = in_queue.get(timeout=timeout)
|
|
torch_device = inputs.pop("torch_device")
|
|
seed = inputs.pop("seed")
|
|
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)
|
|
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
|
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
|
|
sd_pipe.unet.to(memory_format=torch.channels_last)
|
|
sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
|
|
|
|
assert np.abs(image_slice - expected_slice).max() < 5e-3
|
|
except Exception:
|
|
error = f"{traceback.format_exc()}"
|
|
|
|
results = {"error": error}
|
|
out_queue.put(results, timeout=timeout)
|
|
out_queue.join()
|
|
|
|
|
|
class StableDiffusionPipelineFastTests(
|
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=1,
|
|
sample_size=32,
|
|
time_cond_proj_dim=time_cond_proj_dim,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
norm_num_groups=2,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[4, 8],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=64,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=8,
|
|
num_hidden_layers=3,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_ddim(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3203, 0.4555, 0.4711, 0.3505, 0.3973, 0.4650, 0.5137, 0.3392, 0.4045])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_lcm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3454, 0.5349, 0.5185, 0.2808, 0.4509, 0.4612, 0.4655, 0.3601, 0.4315])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_lcm_custom_timesteps(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
del inputs["num_inference_steps"]
|
|
inputs["timesteps"] = [999, 499]
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3454, 0.5349, 0.5185, 0.2808, 0.4509, 0.4612, 0.4655, 0.3601, 0.4315])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_prompt_embeds(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = sd_pipe(**inputs)
|
|
image_slice_1 = output.images[0, -3:, -3:, -1]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
text_inputs = sd_pipe.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=sd_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]
|
|
|
|
inputs["prompt_embeds"] = prompt_embeds
|
|
|
|
# forward
|
|
output = sd_pipe(**inputs)
|
|
image_slice_2 = output.images[0, -3:, -3:, -1]
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
|
|
|
|
def test_stable_diffusion_negative_prompt_embeds(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
negative_prompt = 3 * ["this is a negative prompt"]
|
|
inputs["negative_prompt"] = negative_prompt
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = sd_pipe(**inputs)
|
|
image_slice_1 = output.images[0, -3:, -3:, -1]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
embeds = []
|
|
for p in [prompt, negative_prompt]:
|
|
text_inputs = sd_pipe.tokenizer(
|
|
p,
|
|
padding="max_length",
|
|
max_length=sd_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
embeds.append(sd_pipe.text_encoder(text_inputs)[0])
|
|
|
|
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
|
|
|
|
# forward
|
|
output = sd_pipe(**inputs)
|
|
image_slice_2 = output.images[0, -3:, -3:, -1]
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
|
|
|
|
def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
negative_prompt = 3 * ["this is a negative prompt"]
|
|
inputs["negative_prompt"] = negative_prompt
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = sd_pipe(**inputs)
|
|
image_slice_1 = output.images[0, -3:, -3:, -1]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["negative_prompt"] = negative_prompt
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
text_inputs = sd_pipe.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=sd_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]
|
|
|
|
inputs["prompt_embeds"] = prompt_embeds
|
|
|
|
# forward
|
|
output = sd_pipe(**inputs)
|
|
image_slice_2 = output.images[0, -3:, -3:, -1]
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
|
|
|
|
def test_stable_diffusion_ddim_factor_8(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs, height=136, width=136)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 136, 136, 3)
|
|
expected_slice = np.array([0.4346, 0.5621, 0.5016, 0.3926, 0.4533, 0.4134, 0.5625, 0.5632, 0.5265])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_pndm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3411, 0.5032, 0.4704, 0.3135, 0.4323, 0.4740, 0.5150, 0.3498, 0.4022])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_no_safety_checker(self):
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
|
|
)
|
|
assert isinstance(pipe, StableDiffusionPipeline)
|
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
|
|
assert pipe.safety_checker is None
|
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0]
|
|
assert image is not None
|
|
|
|
# check that there's no error when saving a pipeline with one of the models being None
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pipe.save_pretrained(tmpdirname)
|
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
|
|
|
|
# sanity check that the pipeline still works
|
|
assert pipe.safety_checker is None
|
|
image = pipe("example prompt", num_inference_steps=2).images[0]
|
|
assert image is not None
|
|
|
|
def test_stable_diffusion_k_lms(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3149, 0.5246, 0.4796, 0.3218, 0.4469, 0.4729, 0.5151, 0.3597, 0.3954])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_k_euler_ancestral(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3151, 0.5243, 0.4794, 0.3217, 0.4468, 0.4728, 0.5152, 0.3598, 0.3954])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_k_euler(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3149, 0.5246, 0.4796, 0.3218, 0.4469, 0.4729, 0.5151, 0.3597, 0.3954])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_vae_slicing(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
image_count = 4
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["prompt"] = [inputs["prompt"]] * image_count
|
|
output_1 = sd_pipe(**inputs)
|
|
|
|
# make sure sliced vae decode yields the same result
|
|
sd_pipe.enable_vae_slicing()
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["prompt"] = [inputs["prompt"]] * image_count
|
|
output_2 = sd_pipe(**inputs)
|
|
|
|
# there is a small discrepancy at image borders vs. full batch decode
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3
|
|
|
|
def test_stable_diffusion_vae_tiling(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
components["safety_checker"] = None
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
# Test that tiled decode at 512x512 yields the same result as the non-tiled decode
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
# make sure tiled vae decode yields the same result
|
|
sd_pipe.enable_vae_tiling()
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1
|
|
|
|
# test that tiled decode works with various shapes
|
|
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
|
|
for shape in shapes:
|
|
zeros = torch.zeros(shape).to(device)
|
|
sd_pipe.vae.decode(zeros)
|
|
|
|
def test_stable_diffusion_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "french fries"
|
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.3458, 0.5120, 0.4800, 0.3116, 0.4348, 0.4802, 0.5237, 0.3467, 0.3991])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_long_prompt(self):
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
do_classifier_free_guidance = True
|
|
negative_prompt = None
|
|
num_images_per_prompt = 1
|
|
logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
|
|
logger.setLevel(logging.WARNING)
|
|
|
|
prompt = 100 * "@"
|
|
with CaptureLogger(logger) as cap_logger:
|
|
negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
)
|
|
if negative_text_embeddings is not None:
|
|
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
|
|
|
|
# 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
|
|
assert cap_logger.out.count("@") == 25
|
|
|
|
negative_prompt = "Hello"
|
|
with CaptureLogger(logger) as cap_logger_2:
|
|
negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
)
|
|
if negative_text_embeddings_2 is not None:
|
|
text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
|
|
|
|
assert cap_logger.out == cap_logger_2.out
|
|
|
|
prompt = 25 * "@"
|
|
with CaptureLogger(logger) as cap_logger_3:
|
|
negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
|
|
prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
|
)
|
|
if negative_text_embeddings_3 is not None:
|
|
text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])
|
|
|
|
assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
|
|
assert text_embeddings.shape[1] == 77
|
|
assert cap_logger_3.out == ""
|
|
|
|
def test_stable_diffusion_height_width_opt(self):
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "hey"
|
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
|
|
image_shape = output.images[0].shape[:2]
|
|
assert image_shape == (64, 64)
|
|
|
|
output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
|
|
image_shape = output.images[0].shape[:2]
|
|
assert image_shape == (96, 96)
|
|
|
|
config = dict(sd_pipe.unet.config)
|
|
config["sample_size"] = 96
|
|
sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
|
|
image_shape = output.images[0].shape[:2]
|
|
assert image_shape == (192, 192)
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
|
|
|
def test_freeu_enabled(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "hey"
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images
|
|
|
|
sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
|
|
output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images
|
|
|
|
assert not np.allclose(
|
|
output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
|
|
), "Enabling of FreeU should lead to different results."
|
|
|
|
def test_freeu_disabled(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "hey"
|
|
output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images
|
|
|
|
sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
|
|
sd_pipe.disable_freeu()
|
|
|
|
freeu_keys = {"s1", "s2", "b1", "b2"}
|
|
for upsample_block in sd_pipe.unet.up_blocks:
|
|
for key in freeu_keys:
|
|
assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."
|
|
|
|
output_no_freeu = sd_pipe(
|
|
prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)
|
|
).images
|
|
|
|
assert np.allclose(
|
|
output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1]
|
|
), "Disabling of FreeU should lead to results similar to the default pipeline results."
|
|
|
|
def test_fused_qkv_projections(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
original_image_slice = image[0, -3:, -3:, -1]
|
|
|
|
sd_pipe.fuse_qkv_projections()
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice_fused = image[0, -3:, -3:, -1]
|
|
|
|
sd_pipe.unfuse_qkv_projections()
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice_disabled = image[0, -3:, -3:, -1]
|
|
|
|
assert np.allclose(
|
|
original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
|
|
), "Fusion of QKV projections shouldn't affect the outputs."
|
|
assert np.allclose(
|
|
image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
|
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
|
|
assert np.allclose(
|
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
|
|
), "Original outputs should match when fused QKV projections are disabled."
|
|
|
|
def test_pipeline_interrupt(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "hey"
|
|
num_inference_steps = 3
|
|
|
|
# store intermediate latents from the generation process
|
|
class PipelineState:
|
|
def __init__(self):
|
|
self.state = []
|
|
|
|
def apply(self, pipe, i, t, callback_kwargs):
|
|
self.state.append(callback_kwargs["latents"])
|
|
return callback_kwargs
|
|
|
|
pipe_state = PipelineState()
|
|
sd_pipe(
|
|
prompt,
|
|
num_inference_steps=num_inference_steps,
|
|
output_type="np",
|
|
generator=torch.Generator("cpu").manual_seed(0),
|
|
callback_on_step_end=pipe_state.apply,
|
|
).images
|
|
|
|
# interrupt generation at step index
|
|
interrupt_step_idx = 1
|
|
|
|
def callback_on_step_end(pipe, i, t, callback_kwargs):
|
|
if i == interrupt_step_idx:
|
|
pipe._interrupt = True
|
|
|
|
return callback_kwargs
|
|
|
|
output_interrupted = sd_pipe(
|
|
prompt,
|
|
num_inference_steps=num_inference_steps,
|
|
output_type="latent",
|
|
generator=torch.Generator("cpu").manual_seed(0),
|
|
callback_on_step_end=callback_on_step_end,
|
|
).images
|
|
|
|
# fetch intermediate latents at the interrupted step
|
|
# from the completed generation process
|
|
intermediate_latent = pipe_state.state[interrupt_step_idx]
|
|
|
|
# compare the intermediate latent to the output of the interrupted process
|
|
# they should be the same
|
|
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableDiffusionPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "a photograph of an astronaut riding a horse",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_1_1_pndm(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059])
|
|
assert np.abs(image_slice - expected_slice).max() < 3e-3
|
|
|
|
def test_stable_diffusion_v1_4_with_freeu(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
inputs["num_inference_steps"] = 25
|
|
|
|
sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
|
|
image = sd_pipe(**inputs).images
|
|
image = image[0, -3:, -3:, -1].flatten()
|
|
expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309]
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_stable_diffusion_1_4_pndm(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575])
|
|
assert np.abs(image_slice - expected_slice).max() < 3e-3
|
|
|
|
def test_stable_diffusion_ddim(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
|
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
|
|
assert np.abs(image_slice - expected_slice).max() < 1e-4
|
|
|
|
def test_stable_diffusion_lms(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
|
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
|
|
assert np.abs(image_slice - expected_slice).max() < 3e-3
|
|
|
|
def test_stable_diffusion_dpm(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
|
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
|
sd_pipe.scheduler.config,
|
|
final_sigmas_type="sigma_min",
|
|
)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
|
|
assert np.abs(image_slice - expected_slice).max() < 3e-3
|
|
|
|
def test_stable_diffusion_attention_slicing(self):
|
|
torch.cuda.reset_peak_memory_stats()
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# enable attention slicing
|
|
pipe.enable_attention_slicing()
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
image_sliced = pipe(**inputs).images
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
# make sure that less than 3.75 GB is allocated
|
|
assert mem_bytes < 3.75 * 10**9
|
|
|
|
# disable slicing
|
|
pipe.disable_attention_slicing()
|
|
pipe.unet.set_default_attn_processor()
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
image = pipe(**inputs).images
|
|
|
|
# make sure that more than 3.75 GB is allocated
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
assert mem_bytes > 3.75 * 10**9
|
|
max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
|
|
assert max_diff < 1e-3
|
|
|
|
def test_stable_diffusion_vae_slicing(self):
|
|
torch.cuda.reset_peak_memory_stats()
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
# enable vae slicing
|
|
pipe.enable_vae_slicing()
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
inputs["prompt"] = [inputs["prompt"]] * 4
|
|
inputs["latents"] = torch.cat([inputs["latents"]] * 4)
|
|
image_sliced = pipe(**inputs).images
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
# make sure that less than 4 GB is allocated
|
|
assert mem_bytes < 4e9
|
|
|
|
# disable vae slicing
|
|
pipe.disable_vae_slicing()
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
inputs["prompt"] = [inputs["prompt"]] * 4
|
|
inputs["latents"] = torch.cat([inputs["latents"]] * 4)
|
|
image = pipe(**inputs).images
|
|
|
|
# make sure that more than 4 GB is allocated
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
assert mem_bytes > 4e9
|
|
# There is a small discrepancy at the image borders vs. a fully batched version.
|
|
max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
|
|
assert max_diff < 1e-2
|
|
|
|
def test_stable_diffusion_vae_tiling(self):
|
|
torch.cuda.reset_peak_memory_stats()
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
|
|
pipe.vae = pipe.vae.to(memory_format=torch.channels_last)
|
|
|
|
prompt = "a photograph of an astronaut riding a horse"
|
|
|
|
# enable vae tiling
|
|
pipe.enable_vae_tiling()
|
|
pipe.enable_model_cpu_offload()
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
output_chunked = pipe(
|
|
[prompt],
|
|
width=1024,
|
|
height=1024,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=2,
|
|
output_type="numpy",
|
|
)
|
|
image_chunked = output_chunked.images
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
|
|
# disable vae tiling
|
|
pipe.disable_vae_tiling()
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
output = pipe(
|
|
[prompt],
|
|
width=1024,
|
|
height=1024,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=2,
|
|
output_type="numpy",
|
|
)
|
|
image = output.images
|
|
|
|
assert mem_bytes < 1e10
|
|
max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
|
|
assert max_diff < 1e-2
|
|
|
|
def test_stable_diffusion_fp16_vs_autocast(self):
|
|
# this test makes sure that the original model with autocast
|
|
# and the new model with fp16 yield the same result
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
image_fp16 = pipe(**inputs).images
|
|
|
|
with torch.autocast(torch_device):
|
|
inputs = self.get_inputs(torch_device)
|
|
image_autocast = pipe(**inputs).images
|
|
|
|
# Make sure results are close enough
|
|
diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
|
|
# They ARE different since ops are not run always at the same precision
|
|
# however, they should be extremely close.
|
|
assert diff.mean() < 2e-2
|
|
|
|
def test_stable_diffusion_intermediate_state(self):
|
|
number_of_steps = 0
|
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
|
|
callback_fn.has_been_called = True
|
|
nonlocal number_of_steps
|
|
number_of_steps += 1
|
|
if step == 1:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array(
|
|
[-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
|
|
)
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
|
|
elif step == 2:
|
|
latents = latents.detach().cpu().numpy()
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array(
|
|
[-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
|
|
)
|
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
|
|
|
|
callback_fn.has_been_called = False
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
pipe(**inputs, callback=callback_fn, callback_steps=1)
|
|
assert callback_fn.has_been_called
|
|
assert number_of_steps == inputs["num_inference_steps"]
|
|
|
|
def test_stable_diffusion_low_cpu_mem_usage(self):
|
|
pipeline_id = "CompVis/stable-diffusion-v1-4"
|
|
|
|
start_time = time.time()
|
|
pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
|
|
pipeline_low_cpu_mem_usage.to(torch_device)
|
|
low_cpu_mem_usage_time = time.time() - start_time
|
|
|
|
start_time = time.time()
|
|
_ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
|
|
normal_load_time = time.time() - start_time
|
|
|
|
assert 2 * low_cpu_mem_usage_time < normal_load_time
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
_ = pipe(**inputs)
|
|
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
# make sure that less than 2.8 GB is allocated
|
|
assert mem_bytes < 2.8 * 10**9
|
|
|
|
def test_stable_diffusion_pipeline_with_model_offloading(self):
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
|
|
# Normal inference
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4",
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
outputs = pipe(**inputs)
|
|
mem_bytes = torch.cuda.max_memory_allocated()
|
|
|
|
# With model offloading
|
|
|
|
# Reload but don't move to cuda
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4",
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
|
|
outputs_offloaded = pipe(**inputs)
|
|
mem_bytes_offloaded = torch.cuda.max_memory_allocated()
|
|
|
|
images = outputs.images
|
|
offloaded_images = outputs_offloaded.images
|
|
|
|
max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
|
|
assert max_diff < 1e-3
|
|
assert mem_bytes_offloaded < mem_bytes
|
|
assert mem_bytes_offloaded < 3.5 * 10**9
|
|
for module in pipe.text_encoder, pipe.unet, pipe.vae:
|
|
assert module.device == torch.device("cpu")
|
|
|
|
# With attention slicing
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.reset_max_memory_allocated()
|
|
torch.cuda.reset_peak_memory_stats()
|
|
|
|
pipe.enable_attention_slicing()
|
|
_ = pipe(**inputs)
|
|
mem_bytes_slicing = torch.cuda.max_memory_allocated()
|
|
|
|
assert mem_bytes_slicing < mem_bytes_offloaded
|
|
assert mem_bytes_slicing < 3 * 10**9
|
|
|
|
def test_stable_diffusion_textual_inversion(self):
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
|
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")
|
|
|
|
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
|
|
a111_file_neg = hf_hub_download(
|
|
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
|
|
)
|
|
pipe.load_textual_inversion(a111_file)
|
|
pipe.load_textual_inversion(a111_file_neg)
|
|
pipe.to("cuda")
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1)
|
|
|
|
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
|
|
neg_prompt = "Style-Winter-neg"
|
|
|
|
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
|
|
)
|
|
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 8e-1
|
|
|
|
def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")
|
|
|
|
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
|
|
a111_file_neg = hf_hub_download(
|
|
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
|
|
)
|
|
pipe.load_textual_inversion(a111_file)
|
|
pipe.load_textual_inversion(a111_file_neg)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1)
|
|
|
|
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
|
|
neg_prompt = "Style-Winter-neg"
|
|
|
|
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
|
|
)
|
|
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 8e-1
|
|
|
|
def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
|
|
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
|
pipe.enable_sequential_cpu_offload()
|
|
pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")
|
|
|
|
a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
|
|
a111_file_neg = hf_hub_download(
|
|
"hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
|
|
)
|
|
pipe.load_textual_inversion(a111_file)
|
|
pipe.load_textual_inversion(a111_file_neg)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(1)
|
|
|
|
prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
|
|
neg_prompt = "Style-Winter-neg"
|
|
|
|
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
|
|
)
|
|
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 8e-1
|
|
|
|
@require_python39_or_higher
|
|
@require_torch_2
|
|
def test_stable_diffusion_compile(self):
|
|
seed = 0
|
|
inputs = self.get_inputs(torch_device, seed=seed)
|
|
# Can't pickle a Generator object
|
|
del inputs["generator"]
|
|
inputs["torch_device"] = torch_device
|
|
inputs["seed"] = seed
|
|
run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
|
|
|
|
def test_stable_diffusion_lcm(self):
|
|
unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet")
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
inputs["num_inference_steps"] = 6
|
|
inputs["output_type"] = "pil"
|
|
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png"
|
|
)
|
|
|
|
image = sd_pipe.image_processor.pil_to_numpy(image)
|
|
expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image)
|
|
|
|
max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
|
|
|
|
assert max_diff < 1e-2
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class StableDiffusionPipelineCkptTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_download_from_hub(self):
|
|
ckpt_paths = [
|
|
"https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
|
|
"https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
|
|
]
|
|
|
|
for ckpt_path in ckpt_paths:
|
|
pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to("cuda")
|
|
|
|
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]
|
|
|
|
assert image_out.shape == (512, 512, 3)
|
|
|
|
def test_download_local(self):
|
|
filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")
|
|
|
|
pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to("cuda")
|
|
|
|
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]
|
|
|
|
assert image_out.shape == (512, 512, 3)
|
|
|
|
def test_download_ckpt_diff_format_is_same(self):
|
|
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"
|
|
|
|
pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.unet.set_attn_processor(AttnProcessor())
|
|
pipe.to("cuda")
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
image_ckpt = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.unet.set_attn_processor(AttnProcessor())
|
|
pipe.to("cuda")
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
|
|
|
|
max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())
|
|
|
|
assert max_diff < 1e-3
|
|
|
|
|
|
@nightly
|
|
@require_torch_gpu
|
|
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "a photograph of an astronaut riding a horse",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 50,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_1_4_pndm(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_stable_diffusion_1_5_pndm(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_stable_diffusion_ddim(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
|
|
sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 3e-3
|
|
|
|
def test_stable_diffusion_lms(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
|
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_stable_diffusion_euler(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
|
|
sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|