mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* Initial support for mps in Stable Diffusion pipeline. * Initial "warmup" implementation when using mps. * Make some deterministic tests pass with mps. * Disable training tests when using mps. * SD: generate latents in CPU then move to device. This is especially important when using the mps device, because generators are not supported there. See for example https://github.com/pytorch/pytorch/issues/84288. In addition, the other pipelines seem to use the same approach: generate the random samples then move to the appropriate device. After this change, generating an image in MPS produces the same result as when using the CPU, if the same seed is used. * Remove prints. * Pass AutoencoderKL test_output_pretrained with mps. Sampling from `posterior` must be done in CPU. * Style * Do not use torch.long for log op in mps device. * Perform incompatible padding ops in CPU. UNet tests now pass. See https://github.com/pytorch/pytorch/issues/84535 * Style: fix import order. * Remove unused symbols. * Remove MPSWarmupMixin, do not apply automatically. We do apply warmup in the tests, but not during normal use. This adopts some PR suggestions by @patrickvonplaten. * Add comment for mps fallback to CPU step. * Add README_mps.md for mps installation and use. * Apply `black` to modified files. * Restrict README_mps to SD, show measures in table. * Make PNDM indexing compatible with mps. Addresses #239. * Do not use float64 when using LDMScheduler. Fixes #358. * Fix typo identified by @patil-suraj Co-authored-by: Suraj Patil <surajp815@gmail.com> * Adapt example to new output style. * Restore 1:1 results reproducibility with CompVis. However, mps latents need to be generated in CPU because generators don't work in the mps device. * Move PyTorch nightly to requirements. * Adapt `test_scheduler_outputs_equivalence` ton MPS. * mps: skip training tests instead of ignoring silently. * Make VQModel tests pass on mps. * mps ddim tests: warmup, increase tolerance. * ScoreSdeVeScheduler indexing made mps compatible. * Make ldm pipeline tests pass using warmup. * Style * Simplify casting as suggested in PR. * Add Known Issues to readme. * `isort` import order. * Remove _mps_warmup helpers from ModelMixin. And just make changes to the tests. * Skip tests using unittest decorator for consistency. * Remove temporary var. * Remove spurious blank space. * Remove unused symbol. * Remove README_mps. Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
229 lines
8.4 KiB
Python
229 lines
8.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import tempfile
|
|
import unittest
|
|
from typing import Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers.modeling_utils import ModelMixin
|
|
from diffusers.testing_utils import torch_device
|
|
from diffusers.training_utils import EMAModel
|
|
|
|
|
|
class ModelTesterMixin:
|
|
def test_from_pretrained_save_pretrained(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
new_model = self.model_class.from_pretrained(tmpdirname)
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
# Warmup pass when using mps (see #372)
|
|
if torch_device == "mps" and isinstance(model, ModelMixin):
|
|
_ = model(**self.dummy_input)
|
|
_ = new_model(**self.dummy_input)
|
|
|
|
image = model(**inputs_dict)
|
|
if isinstance(image, dict):
|
|
image = image.sample
|
|
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image.sample
|
|
|
|
max_diff = (image - new_image).abs().sum().item()
|
|
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
|
|
|
|
def test_determinism(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
# Warmup pass when using mps (see #372)
|
|
if torch_device == "mps" and isinstance(model, ModelMixin):
|
|
model(**self.dummy_input)
|
|
|
|
first = model(**inputs_dict)
|
|
if isinstance(first, dict):
|
|
first = first.sample
|
|
|
|
second = model(**inputs_dict)
|
|
if isinstance(second, dict):
|
|
second = second.sample
|
|
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def test_output(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_forward_signature(self):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["sample", "timestep"]
|
|
self.assertListEqual(arg_names[:2], expected_arg_names)
|
|
|
|
def test_model_from_config(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# test if the model can be loaded from the config
|
|
# and has all the expected shape
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_config(tmpdirname)
|
|
new_model = self.model_class.from_config(tmpdirname)
|
|
new_model.to(torch_device)
|
|
new_model.eval()
|
|
|
|
# check if all paramters shape are the same
|
|
for param_name in model.state_dict().keys():
|
|
param_1 = model.state_dict()[param_name]
|
|
param_2 = new_model.state_dict()[param_name]
|
|
self.assertEqual(param_1.shape, param_2.shape)
|
|
|
|
with torch.no_grad():
|
|
output_1 = model(**inputs_dict)
|
|
|
|
if isinstance(output_1, dict):
|
|
output_1 = output_1.sample
|
|
|
|
output_2 = new_model(**inputs_dict)
|
|
|
|
if isinstance(output_2, dict):
|
|
output_2 = output_2.sample
|
|
|
|
self.assertEqual(output_1.shape, output_2.shape)
|
|
|
|
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
|
|
def test_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
|
|
@unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
|
|
def test_ema_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
ema_model = EMAModel(model, device=torch_device)
|
|
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
ema_model.step(model)
|
|
|
|
def test_scheduler_outputs_equivalence(self):
|
|
def set_nan_tensor_to_zero(t):
|
|
# Temporary fallback until `aten::_index_put_impl_` is implemented in mps
|
|
# Track progress in https://github.com/pytorch/pytorch/issues/77764
|
|
device = t.device
|
|
if device.type == "mps":
|
|
t = t.to("cpu")
|
|
t[t != t] = 0
|
|
return t.to(device)
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (List, Tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, Dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
|
),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
# Warmup pass when using mps (see #372)
|
|
if torch_device == "mps" and isinstance(model, ModelMixin):
|
|
model(**self.dummy_input)
|
|
|
|
outputs_dict = model(**inputs_dict)
|
|
outputs_tuple = model(**inputs_dict, return_dict=False)
|
|
|
|
recursive_check(outputs_tuple, outputs_dict)
|