1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/pipelines/stable_diffusion/test_cycle_diffusion.py
Dhruv Nair b6e0b016ce Lazy Import for Diffusers (#4829)
* initial commit

* move modules to import struct

* add dummy objects and _LazyModule

* add lazy import to schedulers

* clean up unused imports

* lazy import on models module

* lazy import for schedulers module

* add lazy import to pipelines module

* lazy import altdiffusion

* lazy import audio diffusion

* lazy import audioldm

* lazy import consistency model

* lazy import controlnet

* lazy import dance diffusion ddim ddpm

* lazy import deepfloyd

* lazy import kandinksy

* lazy imports

* lazy import semantic diffusion

* lazy imports

* lazy import stable diffusion

* move sd output to its own module

* clean up

* lazy import t2iadapter

* lazy import unclip

* lazy import versatile and vq diffsuion

* lazy import vq diffusion

* helper to fetch objects from modules

* lazy import sdxl

* lazy import txt2vid

* lazy import stochastic karras

* fix model imports

* fix bug

* lazy import

* clean up

* clean up

* fixes for tests

* fixes for tests

* clean up

* remove import of torch_utils from utils module

* clean up

* clean up

* fix mistake import statement

* dedicated modules for exporting and loading

* remove testing utils from utils module

* fixes from  merge conflicts

* Update src/diffusers/pipelines/kandinsky2_2/__init__.py

* fix docs

* fix alt diffusion copied from

* fix check dummies

* fix more docs

* remove accelerate import from utils module

* add type checking

* make style

* fix check dummies

* remove torch import from xformers check

* clean up error message

* fixes after upstream merges

* dummy objects fix

* fix tests

* remove unused module import

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-11 09:56:22 +02:00

284 lines
9.6 KiB
Python

# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class CycleDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = CycleDiffusionPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"})
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image / 2 + 0.5
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "An astronaut riding an elephant",
"source_prompt": "An astronaut riding a horse",
"image": image,
"generator": generator,
"num_inference_steps": 2,
"eta": 0.1,
"strength": 0.8,
"guidance_scale": 3,
"source_guidance_scale": 1,
"output_type": "numpy",
}
return inputs
def test_stable_diffusion_cycle(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = CycleDiffusionPipeline(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = pipe(**inputs)
images = output.images
image_slice = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_cycle_fp16(self):
components = self.get_dummy_components()
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.half()
pipe = CycleDiffusionPipeline(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)
images = output.images
image_slice = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
expected_slice = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def test_save_load_local(self):
return super().test_save_load_local()
@unittest.skip("non-deterministic pipeline")
def test_inference_batch_single_identical(self):
return super().test_inference_batch_single_identical()
@skip_mps
def test_dict_tuple_outputs_equivalent(self):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def test_save_load_optional_components(self):
return super().test_save_load_optional_components()
@skip_mps
def test_attention_slicing_forward_pass(self):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class CycleDiffusionPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_cycle_diffusion_pipeline_fp16(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy"
)
init_image = init_image.resize((512, 512))
model_id = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(
model_id, scheduler=scheduler, safety_checker=None, torch_dtype=torch.float16, revision="fp16"
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,
image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
generator=generator,
output_type="np",
)
image = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image).max() < 5e-1
def test_cycle_diffusion_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/cycle-diffusion/black_colored_car.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy"
)
init_image = init_image.resize((512, 512))
model_id = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
source_prompt = "A black colored car"
prompt = "A blue colored car"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
source_prompt=source_prompt,
image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
generator=generator,
output_type="np",
)
image = output.images
assert np.abs(image - expected_image).max() < 2e-2