1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/lora/utils.py
UmerHA 0b8e29289d Skip test_lora_fuse_nan on mps (#7481)
Skipping test_lora_fuse_nan on mps

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-03-27 14:35:59 +05:30

1166 lines
52 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
LCMScheduler,
UNet2DConditionModel,
)
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
floats_tensor,
require_peft_backend,
require_peft_version_greater,
skip_mps,
torch_device,
)
if is_peft_available():
from peft import LoraConfig
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.utils import get_peft_model_state_dict
def state_dicts_almost_equal(sd1, sd2):
sd1 = dict(sorted(sd1.items()))
sd2 = dict(sorted(sd2.items()))
models_are_equal = True
for ten1, ten2 in zip(sd1.values(), sd2.values()):
if (ten1 - ten2).abs().max() > 1e-3:
models_are_equal = False
return models_are_equal
def check_if_lora_correctly_set(model) -> bool:
"""
Checks if the LoRA layers are correctly set with peft
"""
for module in model.modules():
if isinstance(module, BaseTunerLayer):
return True
return False
@require_peft_backend
class PeftLoraLoaderMixinTests:
pipeline_class = None
scheduler_cls = None
scheduler_kwargs = None
has_two_text_encoders = False
unet_kwargs = None
vae_kwargs = None
def get_dummy_components(self, scheduler_cls=None, use_dora=False):
scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
rank = 4
torch.manual_seed(0)
unet = UNet2DConditionModel(**self.unet_kwargs)
scheduler = scheduler_cls(**self.scheduler_kwargs)
torch.manual_seed(0)
vae = AutoencoderKL(**self.vae_kwargs)
text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
if self.has_two_text_encoders:
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
text_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
init_lora_weights=False,
use_dora=use_dora,
)
unet_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
init_lora_weights=False,
use_dora=use_dora,
)
if self.has_two_text_encoders:
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"image_encoder": None,
"feature_extractor": None,
}
else:
pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
"image_encoder": None,
}
return pipeline_components, text_lora_config, unet_lora_config
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 5,
"guidance_scale": 6.0,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
# copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
def get_dummy_tokens(self):
max_seq_length = 77
inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))
prepared_inputs = {}
prepared_inputs["input_ids"] = inputs
return prepared_inputs
def test_simple_inference(self):
"""
Tests a simple inference and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs()
output_no_lora = pipe(**inputs).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
def test_simple_inference_with_text_lora(self):
"""
Tests a simple inference with lora attached on the text encoder
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
)
def test_simple_inference_with_text_lora_and_scale(self):
"""
Tests a simple inference with lora attached on the text encoder + scale argument
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
)
output_lora_scale = pipe(
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
).images
self.assertTrue(
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
"Lora + scale should change the output",
)
output_lora_0_scale = pipe(
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
).images
self.assertTrue(
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
"Lora + 0 scale should lead to same result as no LoRA",
)
def test_simple_inference_with_text_lora_fused(self):
"""
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.fuse_lora()
# Fusing should still keep the LoRA layers
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
)
def test_simple_inference_with_text_lora_unloaded(self):
"""
Tests a simple inference with lora attached to text encoder, then unloads the lora weights
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.unload_lora_weights()
# unloading should remove the LoRA layers
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
)
if self.has_two_text_encoders:
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder_2),
"Lora not correctly unloaded in text encoder 2",
)
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
"Fused lora should change the output",
)
def test_simple_inference_with_text_lora_save_load(self):
"""
Tests a simple usecase where users could use saving utilities for LoRA.
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
with tempfile.TemporaryDirectory() as tmpdirname:
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
if self.has_two_text_encoders:
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
text_encoder_2_lora_layers=text_encoder_2_state_dict,
safe_serialization=False,
)
else:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
safe_serialization=False,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
pipe.unload_lora_weights()
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
self.assertTrue(
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)
def test_simple_inference_save_pretrained(self):
"""
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
pipe_from_pretrained.to(torch_device)
self.assertTrue(
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
"Lora not correctly set in text encoder",
)
if self.has_two_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
"Lora not correctly set in text encoder 2",
)
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)
def test_simple_inference_with_text_unet_lora_save_load(self):
"""
Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
pipe.unet.add_adapter(unet_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
with tempfile.TemporaryDirectory() as tmpdirname:
text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
unet_state_dict = get_peft_model_state_dict(pipe.unet)
if self.has_two_text_encoders:
text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
text_encoder_2_lora_layers=text_encoder_2_state_dict,
unet_lora_layers=unet_state_dict,
safe_serialization=False,
)
else:
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname,
text_encoder_lora_layers=text_encoder_state_dict,
unet_lora_layers=unet_state_dict,
safe_serialization=False,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
pipe.unload_lora_weights()
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))
images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
self.assertTrue(
np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
"Loading from saved checkpoints should give same results.",
)
def test_simple_inference_with_text_unet_lora_and_scale(self):
"""
Tests a simple inference with lora attached on the text encoder + Unet + scale argument
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
pipe.unet.add_adapter(unet_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
)
output_lora_scale = pipe(
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
).images
self.assertTrue(
not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
"Lora + scale should change the output",
)
output_lora_0_scale = pipe(
**inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
).images
self.assertTrue(
np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
"Lora + 0 scale should lead to same result as no LoRA",
)
self.assertTrue(
pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
"The scaling parameter has not been correctly restored!",
)
def test_simple_inference_with_text_lora_unet_fused(self):
"""
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
and makes sure it works as expected - with unet
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
pipe.unet.add_adapter(unet_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.fuse_lora()
# Fusing should still keep the LoRA layers
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet")
if self.has_two_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
)
def test_simple_inference_with_text_unet_lora_unloaded(self):
"""
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
pipe.unet.add_adapter(unet_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.unload_lora_weights()
# unloading should remove the LoRA layers
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
)
self.assertFalse(check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet")
if self.has_two_text_encoders:
self.assertFalse(
check_if_lora_correctly_set(pipe.text_encoder_2),
"Lora not correctly unloaded in text encoder 2",
)
ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
"Fused lora should change the output",
)
def test_simple_inference_with_text_unet_lora_unfused(self):
"""
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
pipe.text_encoder.add_adapter(text_lora_config)
pipe.unet.add_adapter(unet_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.fuse_lora()
output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.unfuse_lora()
output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
# unloading should remove the LoRA layers
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers")
if self.has_two_text_encoders:
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
)
# Fuse and unfuse should lead to the same results
self.assertTrue(
np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3),
"Fused lora should change the output",
)
def test_simple_inference_with_text_unet_multi_adapter(self):
"""
Tests a simple inference with lora attached to text encoder and unet, attaches
multiple adapters and set them
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-2")
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.set_adapters("adapter-1")
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.set_adapters("adapter-2")
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.set_adapters(["adapter-1", "adapter-2"])
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
# Fuse and unfuse should lead to the same results
self.assertFalse(
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
"Adapter 1 and 2 should give different results",
)
self.assertFalse(
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
"Adapter 1 and mixed adapters should give different results",
)
self.assertFalse(
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
"Adapter 2 and mixed adapters should give different results",
)
pipe.disable_lora()
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
"output with no lora and output with lora disabled should give same results",
)
def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self):
"""
Tests a simple inference with lora attached to text encoder and unet, attaches
multiple adapters and set/delete them
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-2")
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.set_adapters("adapter-1")
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.set_adapters("adapter-2")
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.set_adapters(["adapter-1", "adapter-2"])
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
"Adapter 1 and 2 should give different results",
)
self.assertFalse(
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
"Adapter 1 and mixed adapters should give different results",
)
self.assertFalse(
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
"Adapter 2 and mixed adapters should give different results",
)
pipe.delete_adapters("adapter-1")
output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
"Adapter 1 and 2 should give different results",
)
pipe.delete_adapters("adapter-2")
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
"output with no lora and output with lora disabled should give same results",
)
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-2")
pipe.set_adapters(["adapter-1", "adapter-2"])
pipe.delete_adapters(["adapter-1", "adapter-2"])
output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
"output with no lora and output with lora disabled should give same results",
)
def test_simple_inference_with_text_unet_multi_adapter_weighted(self):
"""
Tests a simple inference with lora attached to text encoder and unet, attaches
multiple adapters and set them
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-2")
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.set_adapters("adapter-1")
output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.set_adapters("adapter-2")
output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.set_adapters(["adapter-1", "adapter-2"])
output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
# Fuse and unfuse should lead to the same results
self.assertFalse(
np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
"Adapter 1 and 2 should give different results",
)
self.assertFalse(
np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
"Adapter 1 and mixed adapters should give different results",
)
self.assertFalse(
np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
"Adapter 2 and mixed adapters should give different results",
)
pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
"Weighted adapter and mixed adapter should give different results",
)
pipe.disable_lora()
output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
"output with no lora and output with lora disabled should give same results",
)
@skip_mps
def test_lora_fuse_nan(self):
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
# corrupt one LoRA weight with `inf` values
with torch.no_grad():
pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float(
"inf"
)
# with `safe_fusing=True` we should see an Error
with self.assertRaises(ValueError):
pipe.fuse_lora(safe_fusing=True)
# without we should not see an error, but every image will be black
pipe.fuse_lora(safe_fusing=False)
out = pipe("test", num_inference_steps=2, output_type="np").images
self.assertTrue(np.isnan(out).all())
def test_get_adapters(self):
"""
Tests a simple usecase where we attach multiple adapters and check if the results
are the expected results
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
adapter_names = pipe.get_active_adapters()
self.assertListEqual(adapter_names, ["adapter-1"])
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
pipe.unet.add_adapter(unet_lora_config, "adapter-2")
adapter_names = pipe.get_active_adapters()
self.assertListEqual(adapter_names, ["adapter-2"])
pipe.set_adapters(["adapter-1", "adapter-2"])
self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])
def test_get_list_adapters(self):
"""
Tests a simple usecase where we attach multiple adapters and check if the results
are the expected results
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
adapter_names = pipe.get_list_adapters()
self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]})
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
pipe.unet.add_adapter(unet_lora_config, "adapter-2")
adapter_names = pipe.get_list_adapters()
self.assertDictEqual(
adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]}
)
pipe.set_adapters(["adapter-1", "adapter-2"])
self.assertDictEqual(
pipe.get_list_adapters(),
{"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]},
)
pipe.unet.add_adapter(unet_lora_config, "adapter-3")
self.assertDictEqual(
pipe.get_list_adapters(),
{"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]},
)
@require_peft_version_greater(peft_version="0.6.2")
def test_simple_inference_with_text_lora_unet_fused_multi(self):
"""
Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
and makes sure it works as expected - with unet and multi-adapter case
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
pipe.unet.add_adapter(unet_lora_config, "adapter-1")
# Attach a second adapter
pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
pipe.unet.add_adapter(unet_lora_config, "adapter-2")
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
# set them to multi-adapter inference mode
pipe.set_adapters(["adapter-1", "adapter-2"])
ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.set_adapters(["adapter-1"])
ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
pipe.fuse_lora(adapter_names=["adapter-1"])
# Fusing should still keep the LoRA layers so outpout should remain the same
outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3),
"Fused lora should not change the output",
)
pipe.unfuse_lora()
pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"])
# Fusing should still keep the LoRA layers
output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(
np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3),
"Fused lora should not change the output",
)
@require_peft_version_greater(peft_version="0.9.0")
def test_simple_inference_with_dora(self):
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls, use_dora=True)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_dora_lora.shape == (1, 64, 64, 3))
pipe.text_encoder.add_adapter(text_lora_config)
pipe.unet.add_adapter(unet_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
"DoRA lora should change the output",
)
@unittest.skip("This is failing for now - need to investigate")
def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self):
"""
Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
and makes sure it works as expected
"""
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
pipe.text_encoder.add_adapter(text_lora_config)
pipe.unet.add_adapter(unet_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
if self.has_two_text_encoders:
pipe.text_encoder_2.add_adapter(text_lora_config)
self.assertTrue(
check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)
if self.has_two_text_encoders:
pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)
# Just makes sure it works..
_ = pipe(**inputs, generator=torch.manual_seed(0)).images
def test_modify_padding_mode(self):
def set_pad_mode(network, mode="circular"):
for _, module in network.named_modules():
if isinstance(module, torch.nn.Conv2d):
module.padding_mode = mode
for scheduler_cls in [DDIMScheduler, LCMScheduler]:
components, _, _ = self.get_dummy_components(scheduler_cls)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_pad_mode = "circular"
set_pad_mode(pipe.vae, _pad_mode)
set_pad_mode(pipe.unet, _pad_mode)
_, _, inputs = self.get_dummy_inputs()
_ = pipe(**inputs).images