mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* [Tests] Correct PT2 * correct more * move versatile to nightly * up * up * again * Apply suggestions from code review
157 lines
6.6 KiB
Python
157 lines
6.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import UNet2DConditionModel
|
|
from diffusers.training_utils import EMAModel
|
|
from diffusers.utils.testing_utils import skip_mps, torch_device
|
|
|
|
|
|
class EMAModelTests(unittest.TestCase):
|
|
model_id = "hf-internal-testing/tiny-stable-diffusion-pipe"
|
|
batch_size = 1
|
|
prompt_length = 77
|
|
text_encoder_hidden_dim = 32
|
|
num_in_channels = 4
|
|
latent_height = latent_width = 64
|
|
generator = torch.manual_seed(0)
|
|
|
|
def get_models(self, decay=0.9999):
|
|
unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet")
|
|
unet = unet.to(torch_device)
|
|
ema_unet = EMAModel(unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config)
|
|
return unet, ema_unet
|
|
|
|
def get_dummy_inputs(self):
|
|
noisy_latents = torch.randn(
|
|
self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator
|
|
).to(torch_device)
|
|
timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device)
|
|
encoder_hidden_states = torch.randn(
|
|
self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator
|
|
).to(torch_device)
|
|
return noisy_latents, timesteps, encoder_hidden_states
|
|
|
|
def simulate_backprop(self, unet):
|
|
updated_state_dict = {}
|
|
for k, param in unet.state_dict().items():
|
|
updated_param = torch.randn_like(param) + (param * torch.randn_like(param))
|
|
updated_state_dict.update({k: updated_param})
|
|
unet.load_state_dict(updated_state_dict)
|
|
return unet
|
|
|
|
def test_optimization_steps_updated(self):
|
|
unet, ema_unet = self.get_models()
|
|
# Take the first (hypothetical) EMA step.
|
|
ema_unet.step(unet.parameters())
|
|
assert ema_unet.optimization_step == 1
|
|
|
|
# Take two more.
|
|
for _ in range(2):
|
|
ema_unet.step(unet.parameters())
|
|
assert ema_unet.optimization_step == 3
|
|
|
|
def test_shadow_params_not_updated(self):
|
|
unet, ema_unet = self.get_models()
|
|
# Since the `unet` is not being updated (i.e., backprop'd)
|
|
# there won't be any difference between the `params` of `unet`
|
|
# and `ema_unet` even if we call `ema_unet.step(unet.parameters())`.
|
|
ema_unet.step(unet.parameters())
|
|
orig_params = list(unet.parameters())
|
|
for s_param, param in zip(ema_unet.shadow_params, orig_params):
|
|
assert torch.allclose(s_param, param)
|
|
|
|
# The above holds true even if we call `ema.step()` multiple times since
|
|
# `unet` params are still not being updated.
|
|
for _ in range(4):
|
|
ema_unet.step(unet.parameters())
|
|
for s_param, param in zip(ema_unet.shadow_params, orig_params):
|
|
assert torch.allclose(s_param, param)
|
|
|
|
def test_shadow_params_updated(self):
|
|
unet, ema_unet = self.get_models()
|
|
# Here we simulate the parameter updates for `unet`. Since there might
|
|
# be some parameters which are initialized to zero we take extra care to
|
|
# initialize their values to something non-zero before the multiplication.
|
|
unet_pseudo_updated_step_one = self.simulate_backprop(unet)
|
|
|
|
# Take the EMA step.
|
|
ema_unet.step(unet_pseudo_updated_step_one.parameters())
|
|
|
|
# Now the EMA'd parameters won't be equal to the original model parameters.
|
|
orig_params = list(unet_pseudo_updated_step_one.parameters())
|
|
for s_param, param in zip(ema_unet.shadow_params, orig_params):
|
|
assert ~torch.allclose(s_param, param)
|
|
|
|
# Ensure this is the case when we take multiple EMA steps.
|
|
for _ in range(4):
|
|
ema_unet.step(unet.parameters())
|
|
for s_param, param in zip(ema_unet.shadow_params, orig_params):
|
|
assert ~torch.allclose(s_param, param)
|
|
|
|
def test_consecutive_shadow_params_updated(self):
|
|
# If we call EMA step after a backpropagation consecutively for two times,
|
|
# the shadow params from those two steps should be different.
|
|
unet, ema_unet = self.get_models()
|
|
|
|
# First backprop + EMA
|
|
unet_step_one = self.simulate_backprop(unet)
|
|
ema_unet.step(unet_step_one.parameters())
|
|
step_one_shadow_params = ema_unet.shadow_params
|
|
|
|
# Second backprop + EMA
|
|
unet_step_two = self.simulate_backprop(unet_step_one)
|
|
ema_unet.step(unet_step_two.parameters())
|
|
step_two_shadow_params = ema_unet.shadow_params
|
|
|
|
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
|
|
assert ~torch.allclose(step_one, step_two)
|
|
|
|
def test_zero_decay(self):
|
|
# If there's no decay even if there are backprops, EMA steps
|
|
# won't take any effect i.e., the shadow params would remain the
|
|
# same.
|
|
unet, ema_unet = self.get_models(decay=0.0)
|
|
unet_step_one = self.simulate_backprop(unet)
|
|
ema_unet.step(unet_step_one.parameters())
|
|
step_one_shadow_params = ema_unet.shadow_params
|
|
|
|
unet_step_two = self.simulate_backprop(unet_step_one)
|
|
ema_unet.step(unet_step_two.parameters())
|
|
step_two_shadow_params = ema_unet.shadow_params
|
|
|
|
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
|
|
assert torch.allclose(step_one, step_two)
|
|
|
|
@skip_mps
|
|
def test_serialization(self):
|
|
unet, ema_unet = self.get_models()
|
|
noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
ema_unet.save_pretrained(tmpdir)
|
|
loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel)
|
|
loaded_unet = loaded_unet.to(unet.device)
|
|
|
|
# Since no EMA step has been performed the outputs should match.
|
|
output = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
|
|
|
assert torch.allclose(output, output_loaded, atol=1e-4)
|