mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
246 lines
10 KiB
Python
246 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
from diffusers import DiffusionPipeline, QuantoConfig
|
|
from diffusers.quantizers import PipelineQuantizationConfig
|
|
from diffusers.utils import logging
|
|
from diffusers.utils.testing_utils import (
|
|
CaptureLogger,
|
|
is_transformers_available,
|
|
require_accelerate,
|
|
require_bitsandbytes_version_greater,
|
|
require_quanto,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_transformers_available():
|
|
from transformers import BitsAndBytesConfig as TranBitsAndBytesConfig
|
|
else:
|
|
TranBitsAndBytesConfig = None
|
|
|
|
|
|
@require_bitsandbytes_version_greater("0.43.2")
|
|
@require_quanto
|
|
@require_accelerate
|
|
@require_torch
|
|
@require_torch_accelerator
|
|
@slow
|
|
class PipelineQuantizationTests(unittest.TestCase):
|
|
model_name = "hf-internal-testing/tiny-flux-pipe"
|
|
prompt = "a beautiful sunset amidst the mountains."
|
|
num_inference_steps = 10
|
|
seed = 0
|
|
|
|
def test_quant_config_set_correctly_through_kwargs(self):
|
|
components_to_quantize = ["transformer", "text_encoder_2"]
|
|
quant_config = PipelineQuantizationConfig(
|
|
quant_backend="bitsandbytes_4bit",
|
|
quant_kwargs={
|
|
"load_in_4bit": True,
|
|
"bnb_4bit_quant_type": "nf4",
|
|
"bnb_4bit_compute_dtype": torch.bfloat16,
|
|
},
|
|
components_to_quantize=components_to_quantize,
|
|
)
|
|
pipe = DiffusionPipeline.from_pretrained(
|
|
self.model_name,
|
|
quantization_config=quant_config,
|
|
torch_dtype=torch.bfloat16,
|
|
).to(torch_device)
|
|
for name, component in pipe.components.items():
|
|
if name in components_to_quantize:
|
|
self.assertTrue(getattr(component.config, "quantization_config", None) is not None)
|
|
quantization_config = component.config.quantization_config
|
|
self.assertTrue(quantization_config.load_in_4bit)
|
|
self.assertTrue(quantization_config.quant_method == "bitsandbytes")
|
|
|
|
_ = pipe(self.prompt, num_inference_steps=self.num_inference_steps)
|
|
|
|
def test_quant_config_set_correctly_through_granular(self):
|
|
quant_config = PipelineQuantizationConfig(
|
|
quant_mapping={
|
|
"transformer": QuantoConfig(weights_dtype="int8"),
|
|
"text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
|
|
}
|
|
)
|
|
components_to_quantize = list(quant_config.quant_mapping.keys())
|
|
pipe = DiffusionPipeline.from_pretrained(
|
|
self.model_name,
|
|
quantization_config=quant_config,
|
|
torch_dtype=torch.bfloat16,
|
|
).to(torch_device)
|
|
for name, component in pipe.components.items():
|
|
if name in components_to_quantize:
|
|
self.assertTrue(getattr(component.config, "quantization_config", None) is not None)
|
|
quantization_config = component.config.quantization_config
|
|
|
|
if name == "text_encoder_2":
|
|
self.assertTrue(quantization_config.load_in_4bit)
|
|
self.assertTrue(quantization_config.quant_method == "bitsandbytes")
|
|
else:
|
|
self.assertTrue(quantization_config.quant_method == "quanto")
|
|
|
|
_ = pipe(self.prompt, num_inference_steps=self.num_inference_steps)
|
|
|
|
def test_raises_error_for_invalid_config(self):
|
|
with self.assertRaises(ValueError) as err_context:
|
|
_ = PipelineQuantizationConfig(
|
|
quant_mapping={
|
|
"transformer": QuantoConfig(weights_dtype="int8"),
|
|
"text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
|
|
},
|
|
quant_backend="bitsandbytes_4bit",
|
|
)
|
|
|
|
self.assertTrue(
|
|
str(err_context.exception)
|
|
== "Both `quant_backend` and `quant_mapping` cannot be specified at the same time."
|
|
)
|
|
|
|
def test_validation_for_kwargs(self):
|
|
components_to_quantize = ["transformer", "text_encoder_2"]
|
|
with self.assertRaises(ValueError) as err_context:
|
|
_ = PipelineQuantizationConfig(
|
|
quant_backend="quanto",
|
|
quant_kwargs={"weights_dtype": "int8"},
|
|
components_to_quantize=components_to_quantize,
|
|
)
|
|
|
|
self.assertTrue(
|
|
"The signatures of the __init__ methods of the quantization config classes" in str(err_context.exception)
|
|
)
|
|
|
|
def test_raises_error_for_wrong_config_class(self):
|
|
quant_config = {
|
|
"transformer": QuantoConfig(weights_dtype="int8"),
|
|
"text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
|
|
}
|
|
with self.assertRaises(ValueError) as err_context:
|
|
_ = DiffusionPipeline.from_pretrained(
|
|
self.model_name,
|
|
quantization_config=quant_config,
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
self.assertTrue(
|
|
str(err_context.exception) == "`quantization_config` must be an instance of `PipelineQuantizationConfig`."
|
|
)
|
|
|
|
def test_validation_for_mapping(self):
|
|
with self.assertRaises(ValueError) as err_context:
|
|
_ = PipelineQuantizationConfig(
|
|
quant_mapping={
|
|
"transformer": DiffusionPipeline(),
|
|
"text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
|
|
}
|
|
)
|
|
|
|
self.assertTrue("Provided config for module_name=transformer could not be found" in str(err_context.exception))
|
|
|
|
def test_saving_loading(self):
|
|
quant_config = PipelineQuantizationConfig(
|
|
quant_mapping={
|
|
"transformer": QuantoConfig(weights_dtype="int8"),
|
|
"text_encoder_2": TranBitsAndBytesConfig(load_in_4bit=True, compute_dtype=torch.bfloat16),
|
|
}
|
|
)
|
|
components_to_quantize = list(quant_config.quant_mapping.keys())
|
|
pipe = DiffusionPipeline.from_pretrained(
|
|
self.model_name,
|
|
quantization_config=quant_config,
|
|
torch_dtype=torch.bfloat16,
|
|
).to(torch_device)
|
|
|
|
pipe_inputs = {"prompt": self.prompt, "num_inference_steps": self.num_inference_steps, "output_type": "latent"}
|
|
output_1 = pipe(**pipe_inputs, generator=torch.manual_seed(self.seed)).images
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir)
|
|
loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir, torch_dtype=torch.bfloat16).to(torch_device)
|
|
for name, component in loaded_pipe.components.items():
|
|
if name in components_to_quantize:
|
|
self.assertTrue(getattr(component.config, "quantization_config", None) is not None)
|
|
quantization_config = component.config.quantization_config
|
|
|
|
if name == "text_encoder_2":
|
|
self.assertTrue(quantization_config.load_in_4bit)
|
|
self.assertTrue(quantization_config.quant_method == "bitsandbytes")
|
|
else:
|
|
self.assertTrue(quantization_config.quant_method == "quanto")
|
|
|
|
output_2 = loaded_pipe(**pipe_inputs, generator=torch.manual_seed(self.seed)).images
|
|
|
|
self.assertTrue(torch.allclose(output_1, output_2))
|
|
|
|
@parameterized.expand(["quant_kwargs", "quant_mapping"])
|
|
def test_warn_invalid_component(self, method):
|
|
invalid_component = "foo"
|
|
if method == "quant_kwargs":
|
|
components_to_quantize = ["transformer", invalid_component]
|
|
quant_config = PipelineQuantizationConfig(
|
|
quant_backend="bitsandbytes_8bit",
|
|
quant_kwargs={"load_in_8bit": True},
|
|
components_to_quantize=components_to_quantize,
|
|
)
|
|
else:
|
|
quant_config = PipelineQuantizationConfig(
|
|
quant_mapping={
|
|
"transformer": QuantoConfig("int8"),
|
|
invalid_component: TranBitsAndBytesConfig(load_in_8bit=True),
|
|
}
|
|
)
|
|
|
|
logger = logging.get_logger("diffusers.pipelines.pipeline_loading_utils")
|
|
logger.setLevel(logging.WARNING)
|
|
with CaptureLogger(logger) as cap_logger:
|
|
_ = DiffusionPipeline.from_pretrained(
|
|
self.model_name,
|
|
quantization_config=quant_config,
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
self.assertTrue(invalid_component in cap_logger.out)
|
|
|
|
@parameterized.expand(["quant_kwargs", "quant_mapping"])
|
|
def test_no_quantization_for_all_invalid_components(self, method):
|
|
invalid_component = "foo"
|
|
if method == "quant_kwargs":
|
|
components_to_quantize = [invalid_component]
|
|
quant_config = PipelineQuantizationConfig(
|
|
quant_backend="bitsandbytes_8bit",
|
|
quant_kwargs={"load_in_8bit": True},
|
|
components_to_quantize=components_to_quantize,
|
|
)
|
|
else:
|
|
quant_config = PipelineQuantizationConfig(
|
|
quant_mapping={invalid_component: TranBitsAndBytesConfig(load_in_8bit=True)}
|
|
)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(
|
|
self.model_name,
|
|
quantization_config=quant_config,
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
for name, component in pipe.components.items():
|
|
if isinstance(component, torch.nn.Module):
|
|
self.assertTrue(not hasattr(component.config, "quantization_config"))
|