mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
141 lines
4.5 KiB
Python
141 lines
4.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel
|
|
from diffusers.utils import PIL_INTERPOLATION
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_image,
|
|
nightly,
|
|
require_accelerator,
|
|
require_torch,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class LDMSuperResolutionPipelineFastTests(unittest.TestCase):
|
|
@property
|
|
def dummy_image(self):
|
|
batch_size = 1
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
return image
|
|
|
|
@property
|
|
def dummy_uncond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=6,
|
|
out_channels=3,
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vq_model(self):
|
|
torch.manual_seed(0)
|
|
model = VQModel(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=3,
|
|
)
|
|
return model
|
|
|
|
def test_inference_superresolution(self):
|
|
device = "cpu"
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = DDIMScheduler()
|
|
vqvae = self.dummy_vq_model
|
|
|
|
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
|
|
ldm.to(device)
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
init_image = self.dummy_image.to(device)
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@require_accelerator
|
|
def test_inference_superresolution_fp16(self):
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = DDIMScheduler()
|
|
vqvae = self.dummy_vq_model
|
|
|
|
# put models in fp16
|
|
unet = unet.half()
|
|
vqvae = vqvae.half()
|
|
|
|
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
|
|
ldm.to(torch_device)
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
init_image = self.dummy_image.to(torch_device)
|
|
|
|
image = ldm(init_image, num_inference_steps=2, output_type="np").images
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
|
|
@nightly
|
|
@require_torch
|
|
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase):
|
|
def test_inference_superresolution(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/vq_diffusion/teddy_bear_pool.png"
|
|
)
|
|
init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"])
|
|
|
|
ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution")
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|