mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* cache non lora pipeline outputs. * up * up * up * up * Revert "up" This reverts commit772c32e433. * up * Revert "up" This reverts commitcca03df7fc. * up * up * add . * up * up * up * up * up * up
216 lines
8.2 KiB
Python
216 lines
8.2 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import safetensors.torch
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import AutoTokenizer, T5EncoderModel
|
|
|
|
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanVACEPipeline, WanVACETransformer3DModel
|
|
from diffusers.utils.import_utils import is_peft_available
|
|
|
|
from ..testing_utils import (
|
|
floats_tensor,
|
|
is_flaky,
|
|
require_peft_backend,
|
|
require_peft_version_greater,
|
|
skip_mps,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
if is_peft_available():
|
|
from peft.utils import get_peft_model_state_dict
|
|
|
|
sys.path.append(".")
|
|
|
|
from .utils import PeftLoraLoaderMixinTests # noqa: E402
|
|
|
|
|
|
@require_peft_backend
|
|
@skip_mps
|
|
@is_flaky(max_attempts=10, description="very flaky class")
|
|
class WanVACELoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
|
pipeline_class = WanVACEPipeline
|
|
scheduler_cls = FlowMatchEulerDiscreteScheduler
|
|
scheduler_kwargs = {}
|
|
|
|
transformer_kwargs = {
|
|
"patch_size": (1, 2, 2),
|
|
"num_attention_heads": 2,
|
|
"attention_head_dim": 8,
|
|
"in_channels": 4,
|
|
"out_channels": 4,
|
|
"text_dim": 32,
|
|
"freq_dim": 16,
|
|
"ffn_dim": 16,
|
|
"num_layers": 2,
|
|
"cross_attn_norm": True,
|
|
"qk_norm": "rms_norm_across_heads",
|
|
"rope_max_seq_len": 16,
|
|
"vace_layers": [0],
|
|
"vace_in_channels": 72,
|
|
}
|
|
transformer_cls = WanVACETransformer3DModel
|
|
vae_kwargs = {
|
|
"base_dim": 3,
|
|
"z_dim": 4,
|
|
"dim_mult": [1, 1, 1, 1],
|
|
"latents_mean": torch.randn(4).numpy().tolist(),
|
|
"latents_std": torch.randn(4).numpy().tolist(),
|
|
"num_res_blocks": 1,
|
|
"temperal_downsample": [False, True, True],
|
|
}
|
|
vae_cls = AutoencoderKLWan
|
|
has_two_text_encoders = True
|
|
tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
|
|
text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
|
|
|
|
text_encoder_target_modules = ["q", "k", "v", "o"]
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 9, 16, 16, 3)
|
|
|
|
def get_dummy_inputs(self, with_generator=True):
|
|
batch_size = 1
|
|
sequence_length = 16
|
|
num_channels = 4
|
|
num_frames = 9
|
|
num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
|
|
sizes = (4, 4)
|
|
height, width = 16, 16
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
video = [Image.new("RGB", (height, width))] * num_frames
|
|
mask = [Image.new("L", (height, width), 0)] * num_frames
|
|
|
|
pipeline_inputs = {
|
|
"video": video,
|
|
"mask": mask,
|
|
"prompt": "",
|
|
"num_frames": num_frames,
|
|
"num_inference_steps": 1,
|
|
"guidance_scale": 6.0,
|
|
"height": height,
|
|
"width": height,
|
|
"max_sequence_length": sequence_length,
|
|
"output_type": "np",
|
|
}
|
|
if with_generator:
|
|
pipeline_inputs.update({"generator": generator})
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
|
|
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
|
|
|
|
def test_simple_inference_with_text_denoiser_lora_unfused(self):
|
|
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
|
|
|
|
@unittest.skip("Not supported in Wan VACE.")
|
|
def test_simple_inference_with_text_denoiser_block_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in Wan VACE.")
|
|
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in Wan VACE.")
|
|
def test_modify_padding_mode(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
|
|
def test_simple_inference_with_partial_text_lora(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
|
|
def test_simple_inference_with_text_lora(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
|
|
def test_simple_inference_with_text_lora_and_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
|
|
def test_simple_inference_with_text_lora_fused(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
|
|
def test_simple_inference_with_text_lora_save_load(self):
|
|
pass
|
|
|
|
def test_layerwise_casting_inference_denoiser(self):
|
|
super().test_layerwise_casting_inference_denoiser()
|
|
|
|
@require_peft_version_greater("0.13.2")
|
|
def test_lora_exclude_modules_wanvace(self):
|
|
exclude_module_name = "vace_blocks.0.proj_out"
|
|
components, text_lora_config, denoiser_lora_config = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components).to(torch_device)
|
|
_, _, inputs = self.get_dummy_inputs(with_generator=False)
|
|
|
|
output_no_lora = self.get_base_pipe_output()
|
|
self.assertTrue(output_no_lora.shape == self.output_shape)
|
|
|
|
# only supported for `denoiser` now
|
|
denoiser_lora_config.target_modules = ["proj_out"]
|
|
denoiser_lora_config.exclude_modules = [exclude_module_name]
|
|
pipe, _ = self.add_adapters_to_pipeline(
|
|
pipe, text_lora_config=text_lora_config, denoiser_lora_config=denoiser_lora_config
|
|
)
|
|
# The state dict shouldn't contain the modules to be excluded from LoRA.
|
|
state_dict_from_model = get_peft_model_state_dict(pipe.transformer, adapter_name="default")
|
|
self.assertTrue(not any(exclude_module_name in k for k in state_dict_from_model))
|
|
self.assertTrue(any("proj_out" in k for k in state_dict_from_model))
|
|
output_lora_exclude_modules = pipe(**inputs, generator=torch.manual_seed(0))[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
|
|
lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
|
|
self.pipeline_class.save_lora_weights(save_directory=tmpdir, **lora_state_dicts)
|
|
pipe.unload_lora_weights()
|
|
|
|
# Check in the loaded state dict.
|
|
loaded_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
self.assertTrue(not any(exclude_module_name in k for k in loaded_state_dict))
|
|
self.assertTrue(any("proj_out" in k for k in loaded_state_dict))
|
|
|
|
# Check in the state dict obtained after loading LoRA.
|
|
pipe.load_lora_weights(tmpdir)
|
|
state_dict_from_model = get_peft_model_state_dict(pipe.transformer, adapter_name="default_0")
|
|
self.assertTrue(not any(exclude_module_name in k for k in state_dict_from_model))
|
|
self.assertTrue(any("proj_out" in k for k in state_dict_from_model))
|
|
|
|
output_lora_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
|
|
self.assertTrue(
|
|
not np.allclose(output_no_lora, output_lora_exclude_modules, atol=1e-3, rtol=1e-3),
|
|
"LoRA should change outputs.",
|
|
)
|
|
self.assertTrue(
|
|
np.allclose(output_lora_exclude_modules, output_lora_pretrained, atol=1e-3, rtol=1e-3),
|
|
"Lora outputs should match.",
|
|
)
|
|
|
|
def test_simple_inference_with_text_denoiser_lora_and_scale(self):
|
|
super().test_simple_inference_with_text_denoiser_lora_and_scale()
|