mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
380 lines
16 KiB
Python
380 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
|
|
import safetensors
|
|
|
|
|
|
sys.path.append("..")
|
|
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
|
|
|
|
from diffusers import DiffusionPipeline # noqa: E402
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
logger = logging.getLogger()
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
|
|
class DreamBoothLoRA(ExamplesTestsAccelerate):
|
|
def test_dreambooth_lora(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
|
|
--instance_data_dir docs/source/en/imgs
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
|
|
|
# make sure the state_dict has the correct naming in the parameters.
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
is_lora = all("lora" in k for k in lora_state_dict.keys())
|
|
self.assertTrue(is_lora)
|
|
|
|
# when not training the text encoder, all the parameters in the state dict should start
|
|
# with `"unet"` in their names.
|
|
starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys())
|
|
self.assertTrue(starts_with_unet)
|
|
|
|
def test_dreambooth_lora_with_text_encoder(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
|
|
--instance_data_dir docs/source/en/imgs
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--train_text_encoder
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
|
|
|
# check `text_encoder` is present at all.
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
keys = lora_state_dict.keys()
|
|
is_text_encoder_present = any(k.startswith("text_encoder") for k in keys)
|
|
self.assertTrue(is_text_encoder_present)
|
|
|
|
# the names of the keys of the state dict should either start with `unet`
|
|
# or `text_encoder`.
|
|
is_correct_naming = all(k.startswith("unet") or k.startswith("text_encoder") for k in keys)
|
|
self.assertTrue(is_correct_naming)
|
|
|
|
def test_dreambooth_lora_checkpointing_checkpoints_total_limit(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora.py
|
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
|
|
--instance_data_dir=docs/source/en/imgs
|
|
--output_dir={tmpdir}
|
|
--instance_prompt=prompt
|
|
--resolution=64
|
|
--train_batch_size=1
|
|
--gradient_accumulation_steps=1
|
|
--max_train_steps=6
|
|
--checkpoints_total_limit=2
|
|
--checkpointing_steps=2
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-4", "checkpoint-6"},
|
|
)
|
|
|
|
def test_dreambooth_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora.py
|
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
|
|
--instance_data_dir=docs/source/en/imgs
|
|
--output_dir={tmpdir}
|
|
--instance_prompt=prompt
|
|
--resolution=64
|
|
--train_batch_size=1
|
|
--gradient_accumulation_steps=1
|
|
--max_train_steps=4
|
|
--checkpointing_steps=2
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"})
|
|
|
|
resume_run_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora.py
|
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
|
|
--instance_data_dir=docs/source/en/imgs
|
|
--output_dir={tmpdir}
|
|
--instance_prompt=prompt
|
|
--resolution=64
|
|
--train_batch_size=1
|
|
--gradient_accumulation_steps=1
|
|
--max_train_steps=8
|
|
--checkpointing_steps=2
|
|
--resume_from_checkpoint=checkpoint-4
|
|
--checkpoints_total_limit=2
|
|
""".split()
|
|
|
|
run_command(self._launch_args + resume_run_args)
|
|
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
|
|
|
|
def test_dreambooth_lora_if_model(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-if-pipe
|
|
--instance_data_dir docs/source/en/imgs
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--pre_compute_text_embeddings
|
|
--tokenizer_max_length=77
|
|
--text_encoder_use_attention_mask
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
|
|
|
# make sure the state_dict has the correct naming in the parameters.
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
is_lora = all("lora" in k for k in lora_state_dict.keys())
|
|
self.assertTrue(is_lora)
|
|
|
|
# when not training the text encoder, all the parameters in the state dict should start
|
|
# with `"unet"` in their names.
|
|
starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys())
|
|
self.assertTrue(starts_with_unet)
|
|
|
|
|
|
class DreamBoothLoRASDXL(ExamplesTestsAccelerate):
|
|
def test_dreambooth_lora_sdxl(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora_sdxl.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe
|
|
--instance_data_dir docs/source/en/imgs
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
|
|
|
# make sure the state_dict has the correct naming in the parameters.
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
is_lora = all("lora" in k for k in lora_state_dict.keys())
|
|
self.assertTrue(is_lora)
|
|
|
|
# when not training the text encoder, all the parameters in the state dict should start
|
|
# with `"unet"` in their names.
|
|
starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys())
|
|
self.assertTrue(starts_with_unet)
|
|
|
|
def test_dreambooth_lora_sdxl_with_text_encoder(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora_sdxl.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe
|
|
--instance_data_dir docs/source/en/imgs
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--train_text_encoder
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
|
|
|
|
# make sure the state_dict has the correct naming in the parameters.
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
|
|
is_lora = all("lora" in k for k in lora_state_dict.keys())
|
|
self.assertTrue(is_lora)
|
|
|
|
# when not training the text encoder, all the parameters in the state dict should start
|
|
# with `"unet"` or `"text_encoder"` or `"text_encoder_2"` in their names.
|
|
keys = lora_state_dict.keys()
|
|
starts_with_unet = all(
|
|
k.startswith("unet") or k.startswith("text_encoder") or k.startswith("text_encoder_2") for k in keys
|
|
)
|
|
self.assertTrue(starts_with_unet)
|
|
|
|
def test_dreambooth_lora_sdxl_custom_captions(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora_sdxl.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--caption_column text
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
|
|
def test_dreambooth_lora_sdxl_text_encoder_custom_captions(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora_sdxl.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--caption_column text
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--train_text_encoder
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
|
|
def test_dreambooth_lora_sdxl_checkpointing_checkpoints_total_limit(self):
|
|
pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora_sdxl.py
|
|
--pretrained_model_name_or_path {pipeline_path}
|
|
--instance_data_dir docs/source/en/imgs
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 6
|
|
--checkpointing_steps=2
|
|
--checkpoints_total_limit=2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(pipeline_path)
|
|
pipe.load_lora_weights(tmpdir)
|
|
pipe("a prompt", num_inference_steps=1)
|
|
|
|
# check checkpoint directories exist
|
|
# checkpoint-2 should have been deleted
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
|
|
|
|
def test_dreambooth_lora_sdxl_text_encoder_checkpointing_checkpoints_total_limit(self):
|
|
pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/dreambooth/train_dreambooth_lora_sdxl.py
|
|
--pretrained_model_name_or_path {pipeline_path}
|
|
--instance_data_dir docs/source/en/imgs
|
|
--instance_prompt photo
|
|
--resolution 64
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 7
|
|
--checkpointing_steps=2
|
|
--checkpoints_total_limit=2
|
|
--train_text_encoder
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(pipeline_path)
|
|
pipe.load_lora_weights(tmpdir)
|
|
pipe("a prompt", num_inference_steps=2)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
# checkpoint-2 should have been deleted
|
|
{"checkpoint-4", "checkpoint-6"},
|
|
)
|