mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
773 lines
38 KiB
Python
773 lines
38 KiB
Python
# Copyright 2025 The Intel Labs Team Authors and the HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import PIL
|
|
import torch
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import DiffusionPipeline
|
|
from diffusers.image_processor import PipelineDepthInput, PipelineImageInput, VaeImageProcessorLDM3D
|
|
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
from diffusers.pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d import LDM3DPipelineOutput
|
|
from diffusers.schedulers import DDPMScheduler, KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
deprecate,
|
|
logging,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```python
|
|
>>> from diffusers import StableDiffusionUpscaleLDM3DPipeline
|
|
>>> from PIL import Image
|
|
>>> from io import BytesIO
|
|
>>> import requests
|
|
|
|
>>> pipe = StableDiffusionUpscaleLDM3DPipeline.from_pretrained("Intel/ldm3d-sr")
|
|
>>> pipe = pipe.to("cuda")
|
|
>>> rgb_path = "https://huggingface.co/Intel/ldm3d-sr/resolve/main/lemons_ldm3d_rgb.jpg"
|
|
>>> depth_path = "https://huggingface.co/Intel/ldm3d-sr/resolve/main/lemons_ldm3d_depth.png"
|
|
>>> low_res_rgb = Image.open(BytesIO(requests.get(rgb_path).content)).convert("RGB")
|
|
>>> low_res_depth = Image.open(BytesIO(requests.get(depth_path).content)).convert("L")
|
|
>>> output = pipe(
|
|
... prompt="high quality high resolution uhd 4k image",
|
|
... rgb=low_res_rgb,
|
|
... depth=low_res_depth,
|
|
... num_inference_steps=50,
|
|
... target_res=[1024, 1024],
|
|
... )
|
|
>>> rgb_image, depth_image = output.rgb, output.depth
|
|
>>> rgb_image[0].save("hr_ldm3d_rgb.jpg")
|
|
>>> depth_image[0].save("hr_ldm3d_depth.png")
|
|
```
|
|
"""
|
|
|
|
|
|
class StableDiffusionUpscaleLDM3DPipeline(
|
|
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, FromSingleFileMixin
|
|
):
|
|
r"""
|
|
Pipeline for text-to-image and 3D generation using LDM3D.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
|
The pipeline also inherits the following loading methods:
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
|
text_encoder ([`~transformers.CLIPTextModel`]):
|
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
|
tokenizer ([`~transformers.CLIPTokenizer`]):
|
|
A `CLIPTokenizer` to tokenize text.
|
|
unet ([`UNet2DConditionModel`]):
|
|
A `UNet2DConditionModel` to denoise the encoded image latents.
|
|
low_res_scheduler ([`SchedulerMixin`]):
|
|
A scheduler used to add initial noise to the low resolution conditioning image. It must be an instance of
|
|
[`DDPMScheduler`].
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
|
about a model's potential harms.
|
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
|
"""
|
|
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
low_res_scheduler: DDPMScheduler,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPImageProcessor,
|
|
requires_safety_checker: bool = True,
|
|
watermarker: Optional[Any] = None,
|
|
max_noise_level: int = 350,
|
|
):
|
|
super().__init__()
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
low_res_scheduler=low_res_scheduler,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
watermarker=watermarker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|
self.image_processor = VaeImageProcessorLDM3D(vae_scale_factor=self.vae_scale_factor, resample="bilinear")
|
|
# self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
self.register_to_config(max_noise_level=max_noise_level)
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline._encode_prompt
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
**kwargs,
|
|
):
|
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
prompt_embeds_tuple = self.encode_prompt(
|
|
prompt=prompt,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=lora_scale,
|
|
**kwargs,
|
|
)
|
|
|
|
# concatenate for backwards comp
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
|
|
|
return prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
lora_scale (`float`, *optional*):
|
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
# dynamically adjust the LoRA scale
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
|
prompt_embeds = prompt_embeds[0]
|
|
else:
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
|
)
|
|
# Access the `hidden_states` first, that contains a tuple of
|
|
# all the hidden states from the encoder layers. Then index into
|
|
# the tuple to access the hidden states from the desired layer.
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
|
# We also need to apply the final LayerNorm here to not mess with the
|
|
# representations. The `last_hidden_states` that we typically use for
|
|
# obtaining the final prompt representations passes through the LayerNorm
|
|
# layer.
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
|
|
|
if self.text_encoder is not None:
|
|
prompt_embeds_dtype = self.text_encoder.dtype
|
|
elif self.unet is not None:
|
|
prompt_embeds_dtype = self.unet.dtype
|
|
else:
|
|
prompt_embeds_dtype = prompt_embeds.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
def run_safety_checker(self, image, device, dtype):
|
|
if self.safety_checker is None:
|
|
has_nsfw_concept = None
|
|
else:
|
|
if torch.is_tensor(image):
|
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
|
else:
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
|
rgb_feature_extractor_input = feature_extractor_input[0]
|
|
safety_checker_input = self.feature_extractor(rgb_feature_extractor_input, return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
return image, has_nsfw_concept
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
image,
|
|
noise_level,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
target_res=None,
|
|
):
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
if (
|
|
not isinstance(image, torch.Tensor)
|
|
and not isinstance(image, PIL.Image.Image)
|
|
and not isinstance(image, np.ndarray)
|
|
and not isinstance(image, list)
|
|
):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `np.ndarray`, `PIL.Image.Image` or `list` but is {type(image)}"
|
|
)
|
|
|
|
# verify batch size of prompt and image are same if image is a list or tensor or numpy array
|
|
if isinstance(image, (list, np.ndarray, torch.Tensor)):
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if isinstance(image, list):
|
|
image_batch_size = len(image)
|
|
else:
|
|
image_batch_size = image.shape[0]
|
|
if batch_size != image_batch_size:
|
|
raise ValueError(
|
|
f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}."
|
|
" Please make sure that passed `prompt` matches the batch size of `image`."
|
|
)
|
|
|
|
# check noise level
|
|
if noise_level > self.config.max_noise_level:
|
|
raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}")
|
|
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
shape = (batch_size, num_channels_latents, height, width)
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
if latents.shape != shape:
|
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
|
latents = latents.to(device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
# def upcast_vae(self):
|
|
# dtype = self.vae.dtype
|
|
# self.vae.to(dtype=torch.float32)
|
|
# use_torch_2_0_or_xformers = isinstance(
|
|
# self.vae.decoder.mid_block.attentions[0].processor,
|
|
# (
|
|
# AttnProcessor2_0,
|
|
# XFormersAttnProcessor,
|
|
# LoRAXFormersAttnProcessor,
|
|
# LoRAAttnProcessor2_0,
|
|
# ),
|
|
# )
|
|
# # if xformers or torch_2_0 is used attention block does not need
|
|
# # to be in float32 which can save lots of memory
|
|
# if use_torch_2_0_or_xformers:
|
|
# self.vae.post_quant_conv.to(dtype)
|
|
# self.vae.decoder.conv_in.to(dtype)
|
|
# self.vae.decoder.mid_block.to(dtype)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
rgb: PipelineImageInput = None,
|
|
depth: PipelineDepthInput = None,
|
|
num_inference_steps: int = 75,
|
|
guidance_scale: float = 9.0,
|
|
noise_level: int = 20,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
target_res: Optional[List[int]] = [1024, 1024],
|
|
):
|
|
r"""
|
|
The call function to the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
|
`Image` or tensor representing an image batch to be upscaled.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 5.0):
|
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor is generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
|
provided, text embeddings are generated from the `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
|
every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
|
"not-safe-for-work" (nsfw) content.
|
|
"""
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
rgb,
|
|
noise_level,
|
|
callback_steps,
|
|
negative_prompt,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
)
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
)
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
if do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
# 4. Preprocess image
|
|
rgb, depth = self.image_processor.preprocess(rgb, depth, target_res=target_res)
|
|
rgb = rgb.to(dtype=prompt_embeds.dtype, device=device)
|
|
depth = depth.to(dtype=prompt_embeds.dtype, device=device)
|
|
|
|
# 5. set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 6. Encode low resolutiom image to latent space
|
|
image = torch.cat([rgb, depth], axis=1)
|
|
latent_space_image = self.vae.encode(image).latent_dist.sample(generator)
|
|
latent_space_image *= self.vae.scaling_factor
|
|
noise_level = torch.tensor([noise_level], dtype=torch.long, device=device)
|
|
# noise_rgb = randn_tensor(rgb.shape, generator=generator, device=device, dtype=prompt_embeds.dtype)
|
|
# rgb = self.low_res_scheduler.add_noise(rgb, noise_rgb, noise_level)
|
|
# noise_depth = randn_tensor(depth.shape, generator=generator, device=device, dtype=prompt_embeds.dtype)
|
|
# depth = self.low_res_scheduler.add_noise(depth, noise_depth, noise_level)
|
|
|
|
batch_multiplier = 2 if do_classifier_free_guidance else 1
|
|
latent_space_image = torch.cat([latent_space_image] * batch_multiplier * num_images_per_prompt)
|
|
noise_level = torch.cat([noise_level] * latent_space_image.shape[0])
|
|
|
|
# 7. Prepare latent variables
|
|
height, width = latent_space_image.shape[2:]
|
|
num_channels_latents = self.vae.config.latent_channels
|
|
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 8. Check that sizes of image and latents match
|
|
num_channels_image = latent_space_image.shape[1]
|
|
if num_channels_latents + num_channels_image != self.unet.config.in_channels:
|
|
raise ValueError(
|
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
|
f" `num_channels_image`: {num_channels_image} "
|
|
f" = {num_channels_latents + num_channels_image}. Please verify the config of"
|
|
" `pipeline.unet` or your `image` input."
|
|
)
|
|
|
|
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 10. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
# concat latents, mask, masked_image_latents in the channel dimension
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
latent_model_input = torch.cat([latent_model_input, latent_space_image], dim=1)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
class_labels=noise_level,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
if not output_type == "latent":
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
|
|
|
if needs_upcasting:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
|
|
image = self.vae.decode(latents / self.vae.scaling_factor, return_dict=False)[0]
|
|
|
|
# cast back to fp16 if needed
|
|
if needs_upcasting:
|
|
self.vae.to(dtype=torch.float16)
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
else:
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
|
|
if has_nsfw_concept is None:
|
|
do_denormalize = [True] * image.shape[0]
|
|
else:
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
rgb, depth = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
# 11. Apply watermark
|
|
if output_type == "pil" and self.watermarker is not None:
|
|
rgb = self.watermarker.apply_watermark(rgb)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return ((rgb, depth), has_nsfw_concept)
|
|
|
|
return LDM3DPipelineOutput(rgb=rgb, depth=depth, nsfw_content_detected=has_nsfw_concept)
|