mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Use HF Papers * Apply style fixes --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
1000 lines
46 KiB
Python
1000 lines
46 KiB
Python
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import LCMScheduler
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
deprecate,
|
|
logging,
|
|
replace_example_docstring,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> import numpy as np
|
|
|
|
>>> from diffusers import DiffusionPipeline
|
|
|
|
>>> pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_interpolate")
|
|
>>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality.
|
|
>>> pipe.to(torch_device="cuda", torch_dtype=torch.float32)
|
|
|
|
>>> prompts = ["A cat", "A dog", "A horse"]
|
|
>>> num_inference_steps = 4
|
|
>>> num_interpolation_steps = 24
|
|
>>> seed = 1337
|
|
|
|
>>> torch.manual_seed(seed)
|
|
>>> np.random.seed(seed)
|
|
|
|
>>> images = pipe(
|
|
prompt=prompts,
|
|
height=512,
|
|
width=512,
|
|
num_inference_steps=num_inference_steps,
|
|
num_interpolation_steps=num_interpolation_steps,
|
|
guidance_scale=8.0,
|
|
embedding_interpolation_type="lerp",
|
|
latent_interpolation_type="slerp",
|
|
process_batch_size=4, # Make it higher or lower based on your GPU memory
|
|
generator=torch.Generator(seed),
|
|
)
|
|
|
|
>>> # Save the images as a video
|
|
>>> import imageio
|
|
>>> from PIL import Image
|
|
|
|
>>> def pil_to_video(images: List[Image.Image], filename: str, fps: int = 60) -> None:
|
|
frames = [np.array(image) for image in images]
|
|
with imageio.get_writer(filename, fps=fps) as video_writer:
|
|
for frame in frames:
|
|
video_writer.append_data(frame)
|
|
|
|
>>> pil_to_video(images, "lcm_interpolate.mp4", fps=24)
|
|
```
|
|
"""
|
|
|
|
|
|
def lerp(
|
|
v0: Union[torch.Tensor, np.ndarray],
|
|
v1: Union[torch.Tensor, np.ndarray],
|
|
t: Union[float, torch.Tensor, np.ndarray],
|
|
) -> Union[torch.Tensor, np.ndarray]:
|
|
"""
|
|
Linearly interpolate between two vectors/tensors.
|
|
|
|
Args:
|
|
v0 (`torch.Tensor` or `np.ndarray`): First vector/tensor.
|
|
v1 (`torch.Tensor` or `np.ndarray`): Second vector/tensor.
|
|
t: (`float`, `torch.Tensor`, or `np.ndarray`):
|
|
Interpolation factor. If float, must be between 0 and 1. If np.ndarray or
|
|
torch.Tensor, must be one dimensional with values between 0 and 1.
|
|
|
|
Returns:
|
|
Union[torch.Tensor, np.ndarray]
|
|
Interpolated vector/tensor between v0 and v1.
|
|
"""
|
|
inputs_are_torch = False
|
|
t_is_float = False
|
|
|
|
if isinstance(v0, torch.Tensor):
|
|
inputs_are_torch = True
|
|
input_device = v0.device
|
|
v0 = v0.cpu().numpy()
|
|
v1 = v1.cpu().numpy()
|
|
|
|
if isinstance(t, torch.Tensor):
|
|
inputs_are_torch = True
|
|
input_device = t.device
|
|
t = t.cpu().numpy()
|
|
elif isinstance(t, float):
|
|
t_is_float = True
|
|
t = np.array([t])
|
|
|
|
t = t[..., None]
|
|
v0 = v0[None, ...]
|
|
v1 = v1[None, ...]
|
|
v2 = (1 - t) * v0 + t * v1
|
|
|
|
if t_is_float and v0.ndim > 1:
|
|
assert v2.shape[0] == 1
|
|
v2 = np.squeeze(v2, axis=0)
|
|
if inputs_are_torch:
|
|
v2 = torch.from_numpy(v2).to(input_device)
|
|
|
|
return v2
|
|
|
|
|
|
def slerp(
|
|
v0: Union[torch.Tensor, np.ndarray],
|
|
v1: Union[torch.Tensor, np.ndarray],
|
|
t: Union[float, torch.Tensor, np.ndarray],
|
|
DOT_THRESHOLD=0.9995,
|
|
) -> Union[torch.Tensor, np.ndarray]:
|
|
"""
|
|
Spherical linear interpolation between two vectors/tensors.
|
|
|
|
Args:
|
|
v0 (`torch.Tensor` or `np.ndarray`): First vector/tensor.
|
|
v1 (`torch.Tensor` or `np.ndarray`): Second vector/tensor.
|
|
t: (`float`, `torch.Tensor`, or `np.ndarray`):
|
|
Interpolation factor. If float, must be between 0 and 1. If np.ndarray or
|
|
torch.Tensor, must be one dimensional with values between 0 and 1.
|
|
DOT_THRESHOLD (`float`, *optional*, default=0.9995):
|
|
Threshold for when to use linear interpolation instead of spherical interpolation.
|
|
|
|
Returns:
|
|
`torch.Tensor` or `np.ndarray`:
|
|
Interpolated vector/tensor between v0 and v1.
|
|
"""
|
|
inputs_are_torch = False
|
|
t_is_float = False
|
|
|
|
if isinstance(v0, torch.Tensor):
|
|
inputs_are_torch = True
|
|
input_device = v0.device
|
|
v0 = v0.cpu().numpy()
|
|
v1 = v1.cpu().numpy()
|
|
|
|
if isinstance(t, torch.Tensor):
|
|
inputs_are_torch = True
|
|
input_device = t.device
|
|
t = t.cpu().numpy()
|
|
elif isinstance(t, float):
|
|
t_is_float = True
|
|
t = np.array([t], dtype=v0.dtype)
|
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
|
if np.abs(dot) > DOT_THRESHOLD:
|
|
# v1 and v2 are close to parallel
|
|
# Use linear interpolation instead
|
|
v2 = lerp(v0, v1, t)
|
|
else:
|
|
theta_0 = np.arccos(dot)
|
|
sin_theta_0 = np.sin(theta_0)
|
|
theta_t = theta_0 * t
|
|
sin_theta_t = np.sin(theta_t)
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
|
s1 = sin_theta_t / sin_theta_0
|
|
s0 = s0[..., None]
|
|
s1 = s1[..., None]
|
|
v0 = v0[None, ...]
|
|
v1 = v1[None, ...]
|
|
v2 = s0 * v0 + s1 * v1
|
|
|
|
if t_is_float and v0.ndim > 1:
|
|
assert v2.shape[0] == 1
|
|
v2 = np.squeeze(v2, axis=0)
|
|
if inputs_are_torch:
|
|
v2 = torch.from_numpy(v2).to(input_device)
|
|
|
|
return v2
|
|
|
|
|
|
class LatentConsistencyModelWalkPipeline(
|
|
DiffusionPipeline,
|
|
StableDiffusionMixin,
|
|
TextualInversionLoaderMixin,
|
|
StableDiffusionLoraLoaderMixin,
|
|
FromSingleFileMixin,
|
|
):
|
|
r"""
|
|
Pipeline for text-to-image generation using a latent consistency model.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
|
The pipeline also inherits the following loading methods:
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
|
text_encoder ([`~transformers.CLIPTextModel`]):
|
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
|
tokenizer ([`~transformers.CLIPTokenizer`]):
|
|
A `CLIPTokenizer` to tokenize text.
|
|
unet ([`UNet2DConditionModel`]):
|
|
A `UNet2DConditionModel` to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only
|
|
supports [`LCMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
|
about a model's potential harms.
|
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
|
requires_safety_checker (`bool`, *optional*, defaults to `True`):
|
|
Whether the pipeline requires a safety checker component.
|
|
"""
|
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae"
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
_exclude_from_cpu_offload = ["safety_checker"]
|
|
_callback_tensor_inputs = ["latents", "denoised", "prompt_embeds", "w_embedding"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: LCMScheduler,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPImageProcessor,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
lora_scale (`float`, *optional*):
|
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
# dynamically adjust the LoRA scale
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
|
prompt_embeds = prompt_embeds[0]
|
|
else:
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
|
)
|
|
# Access the `hidden_states` first, that contains a tuple of
|
|
# all the hidden states from the encoder layers. Then index into
|
|
# the tuple to access the hidden states from the desired layer.
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
|
# We also need to apply the final LayerNorm here to not mess with the
|
|
# representations. The `last_hidden_states` that we typically use for
|
|
# obtaining the final prompt representations passes through the LayerNorm
|
|
# layer.
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
|
|
|
if self.text_encoder is not None:
|
|
prompt_embeds_dtype = self.text_encoder.dtype
|
|
elif self.unet is not None:
|
|
prompt_embeds_dtype = self.unet.dtype
|
|
else:
|
|
prompt_embeds_dtype = prompt_embeds.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
|
def run_safety_checker(self, image, device, dtype):
|
|
if self.safety_checker is None:
|
|
has_nsfw_concept = None
|
|
else:
|
|
if torch.is_tensor(image):
|
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
|
else:
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
return image, has_nsfw_concept
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
int(height) // self.vae_scale_factor,
|
|
int(width) // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
"""
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
|
Args:
|
|
timesteps (`torch.Tensor`):
|
|
generate embedding vectors at these timesteps
|
|
embedding_dim (`int`, *optional*, defaults to 512):
|
|
dimension of the embeddings to generate
|
|
dtype:
|
|
data type of the generated embeddings
|
|
|
|
Returns:
|
|
`torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1: # zero pad
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
# Currently StableDiffusionPipeline.check_inputs with negative prompt stuff removed
|
|
def check_inputs(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
height: int,
|
|
width: int,
|
|
callback_steps: int,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
@torch.no_grad()
|
|
def interpolate_embedding(
|
|
self,
|
|
start_embedding: torch.Tensor,
|
|
end_embedding: torch.Tensor,
|
|
num_interpolation_steps: Union[int, List[int]],
|
|
interpolation_type: str,
|
|
) -> torch.Tensor:
|
|
if interpolation_type == "lerp":
|
|
interpolation_fn = lerp
|
|
elif interpolation_type == "slerp":
|
|
interpolation_fn = slerp
|
|
else:
|
|
raise ValueError(
|
|
f"embedding_interpolation_type must be one of ['lerp', 'slerp'], got {interpolation_type}."
|
|
)
|
|
|
|
embedding = torch.cat([start_embedding, end_embedding])
|
|
steps = torch.linspace(0, 1, num_interpolation_steps, dtype=embedding.dtype).cpu().numpy()
|
|
steps = np.expand_dims(steps, axis=tuple(range(1, embedding.ndim)))
|
|
interpolations = []
|
|
|
|
# Interpolate between text embeddings
|
|
# TODO(aryan): Think of a better way of doing this
|
|
# See if it can be done parallelly instead
|
|
for i in range(embedding.shape[0] - 1):
|
|
interpolations.append(interpolation_fn(embedding[i], embedding[i + 1], steps).squeeze(dim=1))
|
|
|
|
interpolations = torch.cat(interpolations)
|
|
return interpolations
|
|
|
|
@torch.no_grad()
|
|
def interpolate_latent(
|
|
self,
|
|
start_latent: torch.Tensor,
|
|
end_latent: torch.Tensor,
|
|
num_interpolation_steps: Union[int, List[int]],
|
|
interpolation_type: str,
|
|
) -> torch.Tensor:
|
|
if interpolation_type == "lerp":
|
|
interpolation_fn = lerp
|
|
elif interpolation_type == "slerp":
|
|
interpolation_fn = slerp
|
|
|
|
latent = torch.cat([start_latent, end_latent])
|
|
steps = torch.linspace(0, 1, num_interpolation_steps, dtype=latent.dtype).cpu().numpy()
|
|
steps = np.expand_dims(steps, axis=tuple(range(1, latent.ndim)))
|
|
interpolations = []
|
|
|
|
# Interpolate between latents
|
|
# TODO: Think of a better way of doing this
|
|
# See if it can be done parallelly instead
|
|
for i in range(latent.shape[0] - 1):
|
|
interpolations.append(interpolation_fn(latent[i], latent[i + 1], steps).squeeze(dim=1))
|
|
|
|
return torch.cat(interpolations)
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def cross_attention_kwargs(self):
|
|
return self._cross_attention_kwargs
|
|
|
|
@property
|
|
def clip_skip(self):
|
|
return self._clip_skip
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 4,
|
|
num_interpolation_steps: int = 8,
|
|
original_inference_steps: int = None,
|
|
guidance_scale: float = 8.5,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
clip_skip: Optional[int] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
embedding_interpolation_type: str = "lerp",
|
|
latent_interpolation_type: str = "slerp",
|
|
process_batch_size: int = 4,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
The call function to the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
original_inference_steps (`int`, *optional*):
|
|
The original number of inference steps use to generate a linearly-spaced timestep schedule, from which
|
|
we will draw `num_inference_steps` evenly spaced timesteps from as our final timestep schedule,
|
|
following the Skipping-Step method in the paper (see Section 4.3). If not set this will default to the
|
|
scheduler's `original_inference_steps` attribute.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
Note that the original latent consistency models paper uses a different CFG formulation where the
|
|
guidance scales are decreased by 1 (so in the paper formulation CFG is enabled when `guidance_scale >
|
|
0`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor is generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
|
provided, text embeddings are generated from the `prompt` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
`callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
embedding_interpolation_type (`str`, *optional*, defaults to `"lerp"`):
|
|
The type of interpolation to use for interpolating between text embeddings. Choose between `"lerp"` and `"slerp"`.
|
|
latent_interpolation_type (`str`, *optional*, defaults to `"slerp"`):
|
|
The type of interpolation to use for interpolating between latents. Choose between `"lerp"` and `"slerp"`.
|
|
process_batch_size (`int`, *optional*, defaults to 4):
|
|
The batch size to use for processing the images. This is useful when generating a large number of images
|
|
and you want to avoid running out of memory.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
|
"not-safe-for-work" (nsfw) content.
|
|
"""
|
|
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
if callback is not None:
|
|
deprecate(
|
|
"callback",
|
|
"1.0.0",
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
if callback_steps is not None:
|
|
deprecate(
|
|
"callback_steps",
|
|
"1.0.0",
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
|
|
# 0. Default height and width to unet
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(prompt, height, width, callback_steps, prompt_embeds, callback_on_step_end_tensor_inputs)
|
|
self._guidance_scale = guidance_scale
|
|
self._clip_skip = clip_skip
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
if batch_size < 2:
|
|
raise ValueError(f"`prompt` must have length of at least 2 but found {batch_size}")
|
|
if num_images_per_prompt != 1:
|
|
raise ValueError("`num_images_per_prompt` must be `1` as no other value is supported yet")
|
|
if prompt_embeds is not None:
|
|
raise ValueError("`prompt_embeds` must be None since it is not supported yet")
|
|
if latents is not None:
|
|
raise ValueError("`latents` must be None since it is not supported yet")
|
|
|
|
device = self._execution_device
|
|
# do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
lora_scale = (
|
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
|
)
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device, original_inference_steps=original_inference_steps)
|
|
timesteps = self.scheduler.timesteps
|
|
num_channels_latents = self.unet.config.in_channels
|
|
# bs = batch_size * num_images_per_prompt
|
|
|
|
# 3. Encode initial input prompt
|
|
prompt_embeds_1, _ = self.encode_prompt(
|
|
prompt[:1],
|
|
device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=False,
|
|
negative_prompt=None,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=None,
|
|
lora_scale=lora_scale,
|
|
clip_skip=self.clip_skip,
|
|
)
|
|
|
|
# 4. Prepare initial latent variables
|
|
latents_1 = self.prepare_latents(
|
|
1,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds_1.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None)
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
self._num_timesteps = len(timesteps)
|
|
images = []
|
|
|
|
# 5. Iterate over prompts and perform latent walk. Note that we do this two prompts at a time
|
|
# otherwise the memory usage ends up being too high.
|
|
with self.progress_bar(total=batch_size - 1) as prompt_progress_bar:
|
|
for i in range(1, batch_size):
|
|
# 6. Encode current prompt
|
|
prompt_embeds_2, _ = self.encode_prompt(
|
|
prompt[i : i + 1],
|
|
device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=False,
|
|
negative_prompt=None,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=None,
|
|
lora_scale=lora_scale,
|
|
clip_skip=self.clip_skip,
|
|
)
|
|
|
|
# 7. Prepare current latent variables
|
|
latents_2 = self.prepare_latents(
|
|
1,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds_2.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 8. Interpolate between previous and current prompt embeddings and latents
|
|
inference_embeddings = self.interpolate_embedding(
|
|
start_embedding=prompt_embeds_1,
|
|
end_embedding=prompt_embeds_2,
|
|
num_interpolation_steps=num_interpolation_steps,
|
|
interpolation_type=embedding_interpolation_type,
|
|
)
|
|
inference_latents = self.interpolate_latent(
|
|
start_latent=latents_1,
|
|
end_latent=latents_2,
|
|
num_interpolation_steps=num_interpolation_steps,
|
|
interpolation_type=latent_interpolation_type,
|
|
)
|
|
next_prompt_embeds = inference_embeddings[-1:].detach().clone()
|
|
next_latents = inference_latents[-1:].detach().clone()
|
|
bs = num_interpolation_steps
|
|
|
|
# 9. Perform inference in batches. Note the use of `process_batch_size` to control the batch size
|
|
# of the inference. This is useful for reducing memory usage and can be configured based on the
|
|
# available GPU memory.
|
|
with self.progress_bar(
|
|
total=(bs + process_batch_size - 1) // process_batch_size
|
|
) as batch_progress_bar:
|
|
for batch_index in range(0, bs, process_batch_size):
|
|
batch_inference_latents = inference_latents[batch_index : batch_index + process_batch_size]
|
|
batch_inference_embeddings = inference_embeddings[
|
|
batch_index : batch_index + process_batch_size
|
|
]
|
|
|
|
self.scheduler.set_timesteps(
|
|
num_inference_steps, device, original_inference_steps=original_inference_steps
|
|
)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
current_bs = batch_inference_embeddings.shape[0]
|
|
w = torch.tensor(self.guidance_scale - 1).repeat(current_bs)
|
|
w_embedding = self.get_guidance_scale_embedding(
|
|
w, embedding_dim=self.unet.config.time_cond_proj_dim
|
|
).to(device=device, dtype=latents_1.dtype)
|
|
|
|
# 10. Perform inference for current batch
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for index, t in enumerate(timesteps):
|
|
batch_inference_latents = batch_inference_latents.to(batch_inference_embeddings.dtype)
|
|
|
|
# model prediction (v-prediction, eps, x)
|
|
model_pred = self.unet(
|
|
batch_inference_latents,
|
|
t,
|
|
timestep_cond=w_embedding,
|
|
encoder_hidden_states=batch_inference_embeddings,
|
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
batch_inference_latents, denoised = self.scheduler.step(
|
|
model_pred, t, batch_inference_latents, **extra_step_kwargs, return_dict=False
|
|
)
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, index, t, callback_kwargs)
|
|
|
|
batch_inference_latents = callback_outputs.pop("latents", batch_inference_latents)
|
|
batch_inference_embeddings = callback_outputs.pop(
|
|
"prompt_embeds", batch_inference_embeddings
|
|
)
|
|
w_embedding = callback_outputs.pop("w_embedding", w_embedding)
|
|
denoised = callback_outputs.pop("denoised", denoised)
|
|
|
|
# call the callback, if provided
|
|
if index == len(timesteps) - 1 or (
|
|
(index + 1) > num_warmup_steps and (index + 1) % self.scheduler.order == 0
|
|
):
|
|
progress_bar.update()
|
|
if callback is not None and index % callback_steps == 0:
|
|
step_idx = index // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, batch_inference_latents)
|
|
|
|
denoised = denoised.to(batch_inference_embeddings.dtype)
|
|
|
|
# Note: This is not supported because you would get black images in your latent walk if
|
|
# NSFW concept is detected
|
|
# if not output_type == "latent":
|
|
# image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
# image, has_nsfw_concept = self.run_safety_checker(image, device, inference_embeddings.dtype)
|
|
# else:
|
|
# image = denoised
|
|
# has_nsfw_concept = None
|
|
|
|
# if has_nsfw_concept is None:
|
|
# do_denormalize = [True] * image.shape[0]
|
|
# else:
|
|
# do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
do_denormalize = [True] * image.shape[0]
|
|
has_nsfw_concept = None
|
|
|
|
image = self.image_processor.postprocess(
|
|
image, output_type=output_type, do_denormalize=do_denormalize
|
|
)
|
|
images.append(image)
|
|
|
|
batch_progress_bar.update()
|
|
|
|
prompt_embeds_1 = next_prompt_embeds
|
|
latents_1 = next_latents
|
|
|
|
prompt_progress_bar.update()
|
|
|
|
# 11. Determine what should be returned
|
|
if output_type == "pil":
|
|
images = [image for image_list in images for image in image_list]
|
|
elif output_type == "np":
|
|
images = np.concatenate(images)
|
|
elif output_type == "pt":
|
|
images = torch.cat(images)
|
|
else:
|
|
raise ValueError("`output_type` must be one of 'pil', 'np' or 'pt'.")
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (images, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
|