1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/examples/server-async/utils/requestscopedpipeline.py
Fredy eda9ff8300 Add RequestScopedPipeline for safe concurrent inference, tokenizer lock and non-mutating retrieve_timesteps (#12328)
* Basic implementation of request scheduling

* Basic editing in SD and Flux Pipelines

* Small Fix

* Fix

* Update for more pipelines

* Add examples/server-async

* Add examples/server-async

* Updated RequestScopedPipeline to handle a single tokenizer lock to avoid race conditions

* Fix

* Fix _TokenizerLockWrapper

* Fix _TokenizerLockWrapper

* Delete _TokenizerLockWrapper

* Fix tokenizer

* Update examples/server-async

* Fix server-async

* Optimizations in examples/server-async

* We keep the implementation simple in examples/server-async

* Update examples/server-async/README.md

* Update examples/server-async/README.md for changes to tokenizer locks and backward-compatible retrieve_timesteps

* The changes to the diffusers core have been undone and all logic is being moved to exmaples/server-async

* Update examples/server-async/utils/*

* Fix BaseAsyncScheduler

* Rollback in the core of the diffusers

* Update examples/server-async/README.md

* Complete rollback of diffusers core files

* Simple implementation of an asynchronous server compatible with SD3-3.5 and Flux Pipelines

* Update examples/server-async/README.md

* Fixed import errors in 'examples/server-async/serverasync.py'

* Flux Pipeline Discard

* Update examples/server-async/README.md

* Apply style fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-09-18 11:33:43 +05:30

297 lines
12 KiB
Python

import copy
import threading
from typing import Any, Iterable, List, Optional
import torch
from diffusers.utils import logging
from .scheduler import BaseAsyncScheduler, async_retrieve_timesteps
logger = logging.get_logger(__name__)
def safe_tokenize(tokenizer, *args, lock, **kwargs):
with lock:
return tokenizer(*args, **kwargs)
class RequestScopedPipeline:
DEFAULT_MUTABLE_ATTRS = [
"_all_hooks",
"_offload_device",
"_progress_bar_config",
"_progress_bar",
"_rng_state",
"_last_seed",
"latents",
]
def __init__(
self,
pipeline: Any,
mutable_attrs: Optional[Iterable[str]] = None,
auto_detect_mutables: bool = True,
tensor_numel_threshold: int = 1_000_000,
tokenizer_lock: Optional[threading.Lock] = None,
wrap_scheduler: bool = True,
):
self._base = pipeline
self.unet = getattr(pipeline, "unet", None)
self.vae = getattr(pipeline, "vae", None)
self.text_encoder = getattr(pipeline, "text_encoder", None)
self.components = getattr(pipeline, "components", None)
if wrap_scheduler and hasattr(pipeline, "scheduler") and pipeline.scheduler is not None:
if not isinstance(pipeline.scheduler, BaseAsyncScheduler):
pipeline.scheduler = BaseAsyncScheduler(pipeline.scheduler)
self._mutable_attrs = list(mutable_attrs) if mutable_attrs is not None else list(self.DEFAULT_MUTABLE_ATTRS)
self._tokenizer_lock = tokenizer_lock if tokenizer_lock is not None else threading.Lock()
self._auto_detect_mutables = bool(auto_detect_mutables)
self._tensor_numel_threshold = int(tensor_numel_threshold)
self._auto_detected_attrs: List[str] = []
def _make_local_scheduler(self, num_inference_steps: int, device: Optional[str] = None, **clone_kwargs):
base_sched = getattr(self._base, "scheduler", None)
if base_sched is None:
return None
if not isinstance(base_sched, BaseAsyncScheduler):
wrapped_scheduler = BaseAsyncScheduler(base_sched)
else:
wrapped_scheduler = base_sched
try:
return wrapped_scheduler.clone_for_request(
num_inference_steps=num_inference_steps, device=device, **clone_kwargs
)
except Exception as e:
logger.debug(f"clone_for_request failed: {e}; falling back to deepcopy()")
try:
return copy.deepcopy(wrapped_scheduler)
except Exception as e:
logger.warning(f"Deepcopy of scheduler failed: {e}. Returning original scheduler (*risky*).")
return wrapped_scheduler
def _autodetect_mutables(self, max_attrs: int = 40):
if not self._auto_detect_mutables:
return []
if self._auto_detected_attrs:
return self._auto_detected_attrs
candidates: List[str] = []
seen = set()
for name in dir(self._base):
if name.startswith("__"):
continue
if name in self._mutable_attrs:
continue
if name in ("to", "save_pretrained", "from_pretrained"):
continue
try:
val = getattr(self._base, name)
except Exception:
continue
import types
# skip callables and modules
if callable(val) or isinstance(val, (types.ModuleType, types.FunctionType, types.MethodType)):
continue
# containers -> candidate
if isinstance(val, (dict, list, set, tuple, bytearray)):
candidates.append(name)
seen.add(name)
else:
# try Tensor detection
try:
if isinstance(val, torch.Tensor):
if val.numel() <= self._tensor_numel_threshold:
candidates.append(name)
seen.add(name)
else:
logger.debug(f"Ignoring large tensor attr '{name}', numel={val.numel()}")
except Exception:
continue
if len(candidates) >= max_attrs:
break
self._auto_detected_attrs = candidates
logger.debug(f"Autodetected mutable attrs to clone: {self._auto_detected_attrs}")
return self._auto_detected_attrs
def _is_readonly_property(self, base_obj, attr_name: str) -> bool:
try:
cls = type(base_obj)
descriptor = getattr(cls, attr_name, None)
if isinstance(descriptor, property):
return descriptor.fset is None
if hasattr(descriptor, "__set__") is False and descriptor is not None:
return False
except Exception:
pass
return False
def _clone_mutable_attrs(self, base, local):
attrs_to_clone = list(self._mutable_attrs)
attrs_to_clone.extend(self._autodetect_mutables())
EXCLUDE_ATTRS = {
"components",
}
for attr in attrs_to_clone:
if attr in EXCLUDE_ATTRS:
logger.debug(f"Skipping excluded attr '{attr}'")
continue
if not hasattr(base, attr):
continue
if self._is_readonly_property(base, attr):
logger.debug(f"Skipping read-only property '{attr}'")
continue
try:
val = getattr(base, attr)
except Exception as e:
logger.debug(f"Could not getattr('{attr}') on base pipeline: {e}")
continue
try:
if isinstance(val, dict):
setattr(local, attr, dict(val))
elif isinstance(val, (list, tuple, set)):
setattr(local, attr, list(val))
elif isinstance(val, bytearray):
setattr(local, attr, bytearray(val))
else:
# small tensors or atomic values
if isinstance(val, torch.Tensor):
if val.numel() <= self._tensor_numel_threshold:
setattr(local, attr, val.clone())
else:
# don't clone big tensors, keep reference
setattr(local, attr, val)
else:
try:
setattr(local, attr, copy.copy(val))
except Exception:
setattr(local, attr, val)
except (AttributeError, TypeError) as e:
logger.debug(f"Skipping cloning attribute '{attr}' because it is not settable: {e}")
continue
except Exception as e:
logger.debug(f"Unexpected error cloning attribute '{attr}': {e}")
continue
def _is_tokenizer_component(self, component) -> bool:
if component is None:
return False
tokenizer_methods = ["encode", "decode", "tokenize", "__call__"]
has_tokenizer_methods = any(hasattr(component, method) for method in tokenizer_methods)
class_name = component.__class__.__name__.lower()
has_tokenizer_in_name = "tokenizer" in class_name
tokenizer_attrs = ["vocab_size", "pad_token", "eos_token", "bos_token"]
has_tokenizer_attrs = any(hasattr(component, attr) for attr in tokenizer_attrs)
return has_tokenizer_methods and (has_tokenizer_in_name or has_tokenizer_attrs)
def generate(self, *args, num_inference_steps: int = 50, device: Optional[str] = None, **kwargs):
local_scheduler = self._make_local_scheduler(num_inference_steps=num_inference_steps, device=device)
try:
local_pipe = copy.copy(self._base)
except Exception as e:
logger.warning(f"copy.copy(self._base) failed: {e}. Falling back to deepcopy (may increase memory).")
local_pipe = copy.deepcopy(self._base)
if local_scheduler is not None:
try:
timesteps, num_steps, configured_scheduler = async_retrieve_timesteps(
local_scheduler.scheduler,
num_inference_steps=num_inference_steps,
device=device,
return_scheduler=True,
**{k: v for k, v in kwargs.items() if k in ["timesteps", "sigmas"]},
)
final_scheduler = BaseAsyncScheduler(configured_scheduler)
setattr(local_pipe, "scheduler", final_scheduler)
except Exception:
logger.warning("Could not set scheduler on local pipe; proceeding without replacing scheduler.")
self._clone_mutable_attrs(self._base, local_pipe)
# 4) wrap tokenizers on the local pipe with the lock wrapper
tokenizer_wrappers = {} # name -> original_tokenizer
try:
# a) wrap direct tokenizer attributes (tokenizer, tokenizer_2, ...)
for name in dir(local_pipe):
if "tokenizer" in name and not name.startswith("_"):
tok = getattr(local_pipe, name, None)
if tok is not None and self._is_tokenizer_component(tok):
tokenizer_wrappers[name] = tok
setattr(
local_pipe,
name,
lambda *args, tok=tok, **kwargs: safe_tokenize(
tok, *args, lock=self._tokenizer_lock, **kwargs
),
)
# b) wrap tokenizers in components dict
if hasattr(local_pipe, "components") and isinstance(local_pipe.components, dict):
for key, val in local_pipe.components.items():
if val is None:
continue
if self._is_tokenizer_component(val):
tokenizer_wrappers[f"components[{key}]"] = val
local_pipe.components[key] = lambda *args, tokenizer=val, **kwargs: safe_tokenize(
tokenizer, *args, lock=self._tokenizer_lock, **kwargs
)
except Exception as e:
logger.debug(f"Tokenizer wrapping step encountered an error: {e}")
result = None
cm = getattr(local_pipe, "model_cpu_offload_context", None)
try:
if callable(cm):
try:
with cm():
result = local_pipe(*args, num_inference_steps=num_inference_steps, **kwargs)
except TypeError:
# cm might be a context manager instance rather than callable
try:
with cm:
result = local_pipe(*args, num_inference_steps=num_inference_steps, **kwargs)
except Exception as e:
logger.debug(f"model_cpu_offload_context usage failed: {e}. Proceeding without it.")
result = local_pipe(*args, num_inference_steps=num_inference_steps, **kwargs)
else:
# no offload context available — call directly
result = local_pipe(*args, num_inference_steps=num_inference_steps, **kwargs)
return result
finally:
try:
for name, tok in tokenizer_wrappers.items():
if name.startswith("components["):
key = name[len("components[") : -1]
local_pipe.components[key] = tok
else:
setattr(local_pipe, name, tok)
except Exception as e:
logger.debug(f"Error restoring wrapped tokenizers: {e}")