mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
62 lines
2.0 KiB
Python
62 lines
2.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
from diffusers import (
|
|
AutoencoderKLWan,
|
|
)
|
|
from diffusers.utils.testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
@require_torch_accelerator
|
|
class AutoencoderKLWanSingleFileTests(unittest.TestCase):
|
|
model_class = AutoencoderKLWan
|
|
ckpt_path = (
|
|
"https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors"
|
|
)
|
|
repo_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_single_file_components(self):
|
|
model = self.model_class.from_pretrained(self.repo_id, subfolder="vae")
|
|
model_single_file = self.model_class.from_single_file(self.ckpt_path)
|
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
|
|
for param_name, param_value in model_single_file.config.items():
|
|
if param_name in PARAMS_TO_IGNORE:
|
|
continue
|
|
assert model.config[param_name] == param_value, (
|
|
f"{param_name} differs between single file loading and pretrained loading"
|
|
)
|