mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
268 lines
9.3 KiB
Python
268 lines
9.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import gc
|
|
import unittest
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
from diffusers import AutoencoderTiny
|
|
from diffusers.utils.testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_hf_numpy,
|
|
slow,
|
|
torch_all_close,
|
|
torch_device,
|
|
)
|
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AutoencoderTinyTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
|
model_class = AutoencoderTiny
|
|
main_input_name = "sample"
|
|
base_precision = 1e-2
|
|
|
|
def get_autoencoder_tiny_config(self, block_out_channels=None):
|
|
block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
|
|
init_dict = {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"encoder_block_out_channels": block_out_channels,
|
|
"decoder_block_out_channels": block_out_channels,
|
|
"num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
|
|
"num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
|
|
}
|
|
return init_dict
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = self.get_autoencoder_tiny_config()
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
@unittest.skip("Model doesn't yet support smaller resolution.")
|
|
def test_enable_disable_tiling(self):
|
|
pass
|
|
|
|
def test_enable_disable_slicing(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
inputs_dict.update({"return_dict": False})
|
|
|
|
torch.manual_seed(0)
|
|
output_without_slicing = model(**inputs_dict)[0]
|
|
|
|
torch.manual_seed(0)
|
|
model.enable_slicing()
|
|
output_with_slicing = model(**inputs_dict)[0]
|
|
|
|
self.assertLess(
|
|
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(),
|
|
0.5,
|
|
"VAE slicing should not affect the inference results",
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
model.disable_slicing()
|
|
output_without_slicing_2 = model(**inputs_dict)[0]
|
|
|
|
self.assertEqual(
|
|
output_without_slicing.detach().cpu().numpy().all(),
|
|
output_without_slicing_2.detach().cpu().numpy().all(),
|
|
"Without slicing outputs should match with the outputs when slicing is manually disabled.",
|
|
)
|
|
|
|
@unittest.skip("Test not supported.")
|
|
def test_outputs_equivalence(self):
|
|
pass
|
|
|
|
@unittest.skip("Test not supported.")
|
|
def test_forward_with_norm_groups(self):
|
|
pass
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"DecoderTiny", "EncoderTiny"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
def test_effective_gradient_checkpointing(self):
|
|
if not self.model_class._supports_gradient_checkpointing:
|
|
return # Skip test if model does not support gradient checkpointing
|
|
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
inputs_dict_copy = copy.deepcopy(inputs_dict)
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
assert not model.is_gradient_checkpointing and model.training
|
|
|
|
out = model(**inputs_dict).sample
|
|
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
|
|
# we won't calculate the loss and rather backprop on out.sum()
|
|
model.zero_grad()
|
|
|
|
labels = torch.randn_like(out)
|
|
loss = (out - labels).mean()
|
|
loss.backward()
|
|
|
|
# re-instantiate the model now enabling gradient checkpointing
|
|
torch.manual_seed(0)
|
|
model_2 = self.model_class(**init_dict)
|
|
# clone model
|
|
model_2.load_state_dict(model.state_dict())
|
|
model_2.to(torch_device)
|
|
model_2.enable_gradient_checkpointing()
|
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training
|
|
|
|
out_2 = model_2(**inputs_dict_copy).sample
|
|
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
|
|
# we won't calculate the loss and rather backprop on out.sum()
|
|
model_2.zero_grad()
|
|
loss_2 = (out_2 - labels).mean()
|
|
loss_2.backward()
|
|
|
|
# compare the output and parameters gradients
|
|
self.assertTrue((loss - loss_2).abs() < 1e-3)
|
|
named_params = dict(model.named_parameters())
|
|
named_params_2 = dict(model_2.named_parameters())
|
|
|
|
for name, param in named_params.items():
|
|
if "encoder.layers" in name:
|
|
continue
|
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=3e-2))
|
|
|
|
@unittest.skip(
|
|
"The forward pass of AutoencoderTiny creates a torch.float32 tensor. This causes inference in compute_dtype=torch.bfloat16 to fail. To fix:\n"
|
|
"1. Change the forward pass to be dtype agnostic.\n"
|
|
"2. Unskip this test."
|
|
)
|
|
def test_layerwise_casting_inference(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"The forward pass of AutoencoderTiny creates a torch.float32 tensor. This causes inference in compute_dtype=torch.bfloat16 to fail. To fix:\n"
|
|
"1. Change the forward pass to be dtype agnostic.\n"
|
|
"2. Unskip this test."
|
|
)
|
|
def test_layerwise_casting_memory(self):
|
|
pass
|
|
|
|
|
|
@slow
|
|
class AutoencoderTinyIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_file_format(self, seed, shape):
|
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
|
|
|
|
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
|
|
dtype = torch.float16 if fp16 else torch.float32
|
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
|
|
return image
|
|
|
|
def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
|
|
torch_dtype = torch.float16 if fp16 else torch.float32
|
|
|
|
model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
|
|
model.to(torch_device).eval()
|
|
return model
|
|
|
|
@parameterized.expand(
|
|
[
|
|
[(1, 4, 73, 97), (1, 3, 584, 776)],
|
|
[(1, 4, 97, 73), (1, 3, 776, 584)],
|
|
[(1, 4, 49, 65), (1, 3, 392, 520)],
|
|
[(1, 4, 65, 49), (1, 3, 520, 392)],
|
|
[(1, 4, 49, 49), (1, 3, 392, 392)],
|
|
]
|
|
)
|
|
def test_tae_tiling(self, in_shape, out_shape):
|
|
model = self.get_sd_vae_model()
|
|
model.enable_tiling()
|
|
with torch.no_grad():
|
|
zeros = torch.zeros(in_shape).to(torch_device)
|
|
dec = model.decode(zeros).sample
|
|
assert dec.shape == out_shape
|
|
|
|
def test_stable_diffusion(self):
|
|
model = self.get_sd_vae_model()
|
|
image = self.get_sd_image(seed=33)
|
|
|
|
with torch.no_grad():
|
|
sample = model(image).sample
|
|
|
|
assert sample.shape == image.shape
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
|
|
|
|
@parameterized.expand([(True,), (False,)])
|
|
def test_tae_roundtrip(self, enable_tiling):
|
|
# load the autoencoder
|
|
model = self.get_sd_vae_model()
|
|
if enable_tiling:
|
|
model.enable_tiling()
|
|
|
|
# make a black image with a white square in the middle,
|
|
# which is large enough to split across multiple tiles
|
|
image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
|
|
image[..., 256:768, 256:768] = 1.0
|
|
|
|
# round-trip the image through the autoencoder
|
|
with torch.no_grad():
|
|
sample = model(image).sample
|
|
|
|
# the autoencoder reconstruction should match original image, sorta
|
|
def downscale(x):
|
|
return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)
|
|
|
|
assert torch_all_close(downscale(sample), downscale(image), atol=0.125)
|