mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Use HF Papers * Apply style fixes --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
1061 lines
51 KiB
Python
1061 lines
51 KiB
Python
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
|
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, ControlNetModel, UNet2DConditionModel, logging
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
PIL_INTERPOLATION,
|
|
replace_example_docstring,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import numpy as np
|
|
>>> import torch
|
|
>>> from PIL import Image
|
|
>>> from stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
|
|
|
>>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
|
>>> from diffusers import ControlNetModel, UniPCMultistepScheduler
|
|
>>> from diffusers.utils import load_image
|
|
|
|
>>> def ade_palette():
|
|
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
|
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
|
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
|
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
|
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
|
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
|
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
|
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
|
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
|
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
|
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
|
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
|
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
|
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
|
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
|
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
|
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
|
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
|
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
|
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
|
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
|
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
|
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
|
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
|
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
|
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
|
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
|
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
|
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
|
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
|
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
|
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
|
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
|
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
|
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
|
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
|
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
|
[102, 255, 0], [92, 0, 255]]
|
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
|
>>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
|
|
|
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
|
|
|
|
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
|
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
>>> pipe.enable_xformers_memory_efficient_attention()
|
|
>>> pipe.enable_model_cpu_offload()
|
|
|
|
>>> def image_to_seg(image):
|
|
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
|
with torch.no_grad():
|
|
outputs = image_segmentor(pixel_values)
|
|
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
|
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
|
palette = np.array(ade_palette())
|
|
for label, color in enumerate(palette):
|
|
color_seg[seg == label, :] = color
|
|
color_seg = color_seg.astype(np.uint8)
|
|
seg_image = Image.fromarray(color_seg)
|
|
return seg_image
|
|
|
|
>>> image = load_image(
|
|
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
|
)
|
|
|
|
>>> mask_image = load_image(
|
|
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
|
)
|
|
|
|
>>> controlnet_conditioning_image = image_to_seg(image)
|
|
|
|
>>> image = pipe(
|
|
"Face of a yellow cat, high resolution, sitting on a park bench",
|
|
image,
|
|
mask_image,
|
|
controlnet_conditioning_image,
|
|
num_inference_steps=20,
|
|
).images[0]
|
|
|
|
>>> image.save("out.png")
|
|
```
|
|
"""
|
|
|
|
|
|
def prepare_image(image):
|
|
if isinstance(image, torch.Tensor):
|
|
# Batch single image
|
|
if image.ndim == 3:
|
|
image = image.unsqueeze(0)
|
|
|
|
image = image.to(dtype=torch.float32)
|
|
else:
|
|
# preprocess image
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
|
image = [image]
|
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
|
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
|
image = np.concatenate(image, axis=0)
|
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
|
image = np.concatenate([i[None, :] for i in image], axis=0)
|
|
|
|
image = image.transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
|
|
return image
|
|
|
|
|
|
def prepare_mask_image(mask_image):
|
|
if isinstance(mask_image, torch.Tensor):
|
|
if mask_image.ndim == 2:
|
|
# Batch and add channel dim for single mask
|
|
mask_image = mask_image.unsqueeze(0).unsqueeze(0)
|
|
elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
|
|
# Single mask, the 0'th dimension is considered to be
|
|
# the existing batch size of 1
|
|
mask_image = mask_image.unsqueeze(0)
|
|
elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
|
|
# Batch of mask, the 0'th dimension is considered to be
|
|
# the batching dimension
|
|
mask_image = mask_image.unsqueeze(1)
|
|
|
|
# Binarize mask
|
|
mask_image[mask_image < 0.5] = 0
|
|
mask_image[mask_image >= 0.5] = 1
|
|
else:
|
|
# preprocess mask
|
|
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
|
|
mask_image = [mask_image]
|
|
|
|
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
|
|
mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0)
|
|
mask_image = mask_image.astype(np.float32) / 255.0
|
|
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
|
|
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)
|
|
|
|
mask_image[mask_image < 0.5] = 0
|
|
mask_image[mask_image >= 0.5] = 1
|
|
mask_image = torch.from_numpy(mask_image)
|
|
|
|
return mask_image
|
|
|
|
|
|
def prepare_controlnet_conditioning_image(
|
|
controlnet_conditioning_image,
|
|
width,
|
|
height,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
device,
|
|
dtype,
|
|
do_classifier_free_guidance,
|
|
):
|
|
if not isinstance(controlnet_conditioning_image, torch.Tensor):
|
|
if isinstance(controlnet_conditioning_image, PIL.Image.Image):
|
|
controlnet_conditioning_image = [controlnet_conditioning_image]
|
|
|
|
if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
|
|
controlnet_conditioning_image = [
|
|
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
|
|
for i in controlnet_conditioning_image
|
|
]
|
|
controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
|
|
controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
|
|
controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
|
|
controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
|
|
elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
|
|
controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)
|
|
|
|
image_batch_size = controlnet_conditioning_image.shape[0]
|
|
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
# image batch size is the same as prompt batch size
|
|
repeat_by = num_images_per_prompt
|
|
|
|
controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)
|
|
|
|
if do_classifier_free_guidance:
|
|
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
|
|
|
|
return controlnet_conditioning_image
|
|
|
|
|
|
class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
"""
|
|
Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
|
"""
|
|
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPImageProcessor,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
if isinstance(controlnet, (list, tuple)):
|
|
controlnet = MultiControlNetModel(controlnet)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
controlnet=controlnet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
"""
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
return prompt_embeds
|
|
|
|
def run_safety_checker(self, image, device, dtype):
|
|
if self.safety_checker is not None:
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
else:
|
|
has_nsfw_concept = None
|
|
return image, has_nsfw_concept
|
|
|
|
def decode_latents(self, latents):
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_controlnet_conditioning_image(self, image, prompt, prompt_embeds):
|
|
image_is_pil = isinstance(image, PIL.Image.Image)
|
|
image_is_tensor = isinstance(image, torch.Tensor)
|
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
|
|
|
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
|
raise TypeError(
|
|
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
|
)
|
|
|
|
if image_is_pil:
|
|
image_batch_size = 1
|
|
elif image_is_tensor:
|
|
image_batch_size = image.shape[0]
|
|
elif image_is_pil_list:
|
|
image_batch_size = len(image)
|
|
elif image_is_tensor_list:
|
|
image_batch_size = len(image)
|
|
else:
|
|
raise ValueError("controlnet condition image is not valid")
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
prompt_batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
prompt_batch_size = len(prompt)
|
|
elif prompt_embeds is not None:
|
|
prompt_batch_size = prompt_embeds.shape[0]
|
|
else:
|
|
raise ValueError("prompt or prompt_embeds are not valid")
|
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
|
raise ValueError(
|
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
|
)
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
image,
|
|
mask_image,
|
|
controlnet_conditioning_image,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
controlnet_conditioning_scale=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
# check controlnet condition image
|
|
if isinstance(self.controlnet, ControlNetModel):
|
|
self.check_controlnet_conditioning_image(controlnet_conditioning_image, prompt, prompt_embeds)
|
|
elif isinstance(self.controlnet, MultiControlNetModel):
|
|
if not isinstance(controlnet_conditioning_image, list):
|
|
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
|
if len(controlnet_conditioning_image) != len(self.controlnet.nets):
|
|
raise ValueError(
|
|
"For multiple controlnets: `image` must have the same length as the number of controlnets."
|
|
)
|
|
for image_ in controlnet_conditioning_image:
|
|
self.check_controlnet_conditioning_image(image_, prompt, prompt_embeds)
|
|
else:
|
|
assert False
|
|
|
|
# Check `controlnet_conditioning_scale`
|
|
if isinstance(self.controlnet, ControlNetModel):
|
|
if not isinstance(controlnet_conditioning_scale, float):
|
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
|
elif isinstance(self.controlnet, MultiControlNetModel):
|
|
if isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
|
self.controlnet.nets
|
|
):
|
|
raise ValueError(
|
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
|
" the same length as the number of controlnets"
|
|
)
|
|
else:
|
|
assert False
|
|
|
|
if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor):
|
|
raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor")
|
|
|
|
if isinstance(image, PIL.Image.Image) and not isinstance(mask_image, PIL.Image.Image):
|
|
raise TypeError("if `image` is a PIL image, `mask_image` must also be a PIL image")
|
|
|
|
if isinstance(image, torch.Tensor):
|
|
if image.ndim != 3 and image.ndim != 4:
|
|
raise ValueError("`image` must have 3 or 4 dimensions")
|
|
|
|
if mask_image.ndim != 2 and mask_image.ndim != 3 and mask_image.ndim != 4:
|
|
raise ValueError("`mask_image` must have 2, 3, or 4 dimensions")
|
|
|
|
if image.ndim == 3:
|
|
image_batch_size = 1
|
|
image_channels, image_height, image_width = image.shape
|
|
elif image.ndim == 4:
|
|
image_batch_size, image_channels, image_height, image_width = image.shape
|
|
else:
|
|
assert False
|
|
|
|
if mask_image.ndim == 2:
|
|
mask_image_batch_size = 1
|
|
mask_image_channels = 1
|
|
mask_image_height, mask_image_width = mask_image.shape
|
|
elif mask_image.ndim == 3:
|
|
mask_image_channels = 1
|
|
mask_image_batch_size, mask_image_height, mask_image_width = mask_image.shape
|
|
elif mask_image.ndim == 4:
|
|
mask_image_batch_size, mask_image_channels, mask_image_height, mask_image_width = mask_image.shape
|
|
|
|
if image_channels != 3:
|
|
raise ValueError("`image` must have 3 channels")
|
|
|
|
if mask_image_channels != 1:
|
|
raise ValueError("`mask_image` must have 1 channel")
|
|
|
|
if image_batch_size != mask_image_batch_size:
|
|
raise ValueError("`image` and `mask_image` mush have the same batch sizes")
|
|
|
|
if image_height != mask_image_height or image_width != mask_image_width:
|
|
raise ValueError("`image` and `mask_image` must have the same height and width dimensions")
|
|
|
|
if image.min() < -1 or image.max() > 1:
|
|
raise ValueError("`image` should be in range [-1, 1]")
|
|
|
|
if mask_image.min() < 0 or mask_image.max() > 1:
|
|
raise ValueError("`mask_image` should be in range [0, 1]")
|
|
else:
|
|
mask_image_channels = 1
|
|
image_channels = 3
|
|
|
|
single_image_latent_channels = self.vae.config.latent_channels
|
|
|
|
total_latent_channels = single_image_latent_channels * 2 + mask_image_channels
|
|
|
|
if total_latent_channels != self.unet.config.in_channels:
|
|
raise ValueError(
|
|
f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received"
|
|
f" non inpainting latent channels: {single_image_latent_channels},"
|
|
f" mask channels: {mask_image_channels}, and masked image channels: {single_image_latent_channels}."
|
|
f" Please verify the config of `pipeline.unet` and the `mask_image` and `image` inputs."
|
|
)
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
int(height) // self.vae_scale_factor,
|
|
int(width) // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
|
|
return latents
|
|
|
|
def prepare_mask_latents(self, mask_image, batch_size, height, width, dtype, device, do_classifier_free_guidance):
|
|
# resize the mask to latents shape as we concatenate the mask to the latents
|
|
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
|
# and half precision
|
|
mask_image = F.interpolate(mask_image, size=(height // self.vae_scale_factor, width // self.vae_scale_factor))
|
|
mask_image = mask_image.to(device=device, dtype=dtype)
|
|
|
|
# duplicate mask for each generation per prompt, using mps friendly method
|
|
if mask_image.shape[0] < batch_size:
|
|
if not batch_size % mask_image.shape[0] == 0:
|
|
raise ValueError(
|
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
|
f" a total batch size of {batch_size}, but {mask_image.shape[0]} masks were passed. Make sure the number"
|
|
" of masks that you pass is divisible by the total requested batch size."
|
|
)
|
|
mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1)
|
|
|
|
mask_image = torch.cat([mask_image] * 2) if do_classifier_free_guidance else mask_image
|
|
|
|
mask_image_latents = mask_image
|
|
|
|
return mask_image_latents
|
|
|
|
def prepare_masked_image_latents(
|
|
self, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
|
):
|
|
masked_image = masked_image.to(device=device, dtype=dtype)
|
|
|
|
# encode the mask image into latents space so we can concatenate it to the latents
|
|
if isinstance(generator, list):
|
|
masked_image_latents = [
|
|
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
|
for i in range(batch_size)
|
|
]
|
|
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
|
else:
|
|
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
|
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
|
|
|
|
# duplicate masked_image_latents for each generation per prompt, using mps friendly method
|
|
if masked_image_latents.shape[0] < batch_size:
|
|
if not batch_size % masked_image_latents.shape[0] == 0:
|
|
raise ValueError(
|
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
|
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
|
)
|
|
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
|
|
|
masked_image_latents = (
|
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
|
)
|
|
|
|
# aligning device to prevent device errors when concating it with the latent model input
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
|
return masked_image_latents
|
|
|
|
def _default_height_width(self, height, width, image):
|
|
if isinstance(image, list):
|
|
image = image[0]
|
|
|
|
if height is None:
|
|
if isinstance(image, PIL.Image.Image):
|
|
height = image.height
|
|
elif isinstance(image, torch.Tensor):
|
|
height = image.shape[3]
|
|
|
|
height = (height // 8) * 8 # round down to nearest multiple of 8
|
|
|
|
if width is None:
|
|
if isinstance(image, PIL.Image.Image):
|
|
width = image.width
|
|
elif isinstance(image, torch.Tensor):
|
|
width = image.shape[2]
|
|
|
|
width = (width // 8) * 8 # round down to nearest multiple of 8
|
|
|
|
return height, width
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
|
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
|
controlnet_conditioning_image: Union[
|
|
torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]
|
|
] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
image (`torch.Tensor` or `PIL.Image.Image`):
|
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
|
be masked out with `mask_image` and repainted according to `prompt`.
|
|
mask_image (`torch.Tensor` or `PIL.Image.Image`):
|
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
|
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
|
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
|
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
|
controlnet_conditioning_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]`):
|
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
|
the type is specified as `torch.Tensor`, it is passed to ControlNet as is. PIL.Image.Image` can
|
|
also be accepted as an image. The control image is automatically resized to fit the output image.
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
to the residual in the original unet.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
# 0. Default height and width to unet
|
|
height, width = self._default_height_width(height, width, controlnet_conditioning_image)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
image,
|
|
mask_image,
|
|
controlnet_conditioning_image,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
controlnet_conditioning_scale,
|
|
)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
if isinstance(self.controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(self.controlnet.nets)
|
|
|
|
# 3. Encode input prompt
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
)
|
|
|
|
# 4. Prepare mask, image, and controlnet_conditioning_image
|
|
image = prepare_image(image)
|
|
|
|
mask_image = prepare_mask_image(mask_image)
|
|
|
|
# condition image(s)
|
|
if isinstance(self.controlnet, ControlNetModel):
|
|
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
|
|
controlnet_conditioning_image=controlnet_conditioning_image,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=self.controlnet.dtype,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
)
|
|
elif isinstance(self.controlnet, MultiControlNetModel):
|
|
controlnet_conditioning_images = []
|
|
|
|
for image_ in controlnet_conditioning_image:
|
|
image_ = prepare_controlnet_conditioning_image(
|
|
controlnet_conditioning_image=image_,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=self.controlnet.dtype,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
)
|
|
controlnet_conditioning_images.append(image_)
|
|
|
|
controlnet_conditioning_image = controlnet_conditioning_images
|
|
else:
|
|
assert False
|
|
|
|
masked_image = image * (mask_image < 0.5)
|
|
|
|
# 5. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
# 6. Prepare latent variables
|
|
num_channels_latents = self.vae.config.latent_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
mask_image_latents = self.prepare_mask_latents(
|
|
mask_image,
|
|
batch_size * num_images_per_prompt,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
do_classifier_free_guidance,
|
|
)
|
|
|
|
masked_image_latents = self.prepare_masked_image_latents(
|
|
masked_image,
|
|
batch_size * num_images_per_prompt,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
do_classifier_free_guidance,
|
|
)
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 8. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# expand the latents if we are doing classifier free guidance
|
|
non_inpainting_latent_model_input = (
|
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
)
|
|
|
|
non_inpainting_latent_model_input = self.scheduler.scale_model_input(
|
|
non_inpainting_latent_model_input, t
|
|
)
|
|
|
|
inpainting_latent_model_input = torch.cat(
|
|
[non_inpainting_latent_model_input, mask_image_latents, masked_image_latents], dim=1
|
|
)
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
non_inpainting_latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
controlnet_cond=controlnet_conditioning_image,
|
|
conditioning_scale=controlnet_conditioning_scale,
|
|
return_dict=False,
|
|
)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
inpainting_latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
# If we do sequential model offloading, let's offload unet and controlnet
|
|
# manually for max memory savings
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.unet.to("cpu")
|
|
self.controlnet.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
elif output_type == "pil":
|
|
# 8. Post-processing
|
|
image = self.decode_latents(latents)
|
|
|
|
# 9. Run safety checker
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
# 10. Convert to PIL
|
|
image = self.numpy_to_pil(image)
|
|
else:
|
|
# 8. Post-processing
|
|
image = self.decode_latents(latents)
|
|
|
|
# 9. Run safety checker
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|