mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* start adding compilation tests for quantization. * fixes * make common utility. * modularize. * add group offloading+compile * xfail * update * Update tests/quantization/test_torch_compile_utils.py Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com> * fixes --------- Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
88 lines
3.3 KiB
Python
88 lines
3.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import gc
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import DiffusionPipeline
|
|
from diffusers.utils.testing_utils import backend_empty_cache, require_torch_gpu, slow, torch_device
|
|
|
|
|
|
@require_torch_gpu
|
|
@slow
|
|
class QuantCompileTests(unittest.TestCase):
|
|
quantization_config = None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
torch.compiler.reset()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
torch.compiler.reset()
|
|
|
|
def _init_pipeline(self, quantization_config, torch_dtype):
|
|
pipe = DiffusionPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-3-medium-diffusers",
|
|
quantization_config=quantization_config,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
return pipe
|
|
|
|
def _test_torch_compile(self, quantization_config, torch_dtype=torch.bfloat16):
|
|
pipe = self._init_pipeline(quantization_config, torch_dtype).to("cuda")
|
|
# import to ensure fullgraph True
|
|
pipe.transformer.compile(fullgraph=True)
|
|
|
|
for _ in range(2):
|
|
# small resolutions to ensure speedy execution.
|
|
pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256)
|
|
|
|
def _test_torch_compile_with_cpu_offload(self, quantization_config, torch_dtype=torch.bfloat16):
|
|
pipe = self._init_pipeline(quantization_config, torch_dtype)
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.transformer.compile()
|
|
|
|
for _ in range(2):
|
|
# small resolutions to ensure speedy execution.
|
|
pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256)
|
|
|
|
def _test_torch_compile_with_group_offload(self, quantization_config, torch_dtype=torch.bfloat16):
|
|
torch._dynamo.config.cache_size_limit = 10000
|
|
|
|
pipe = self._init_pipeline(quantization_config, torch_dtype)
|
|
group_offload_kwargs = {
|
|
"onload_device": torch.device("cuda"),
|
|
"offload_device": torch.device("cpu"),
|
|
"offload_type": "leaf_level",
|
|
"use_stream": True,
|
|
"non_blocking": True,
|
|
}
|
|
pipe.transformer.enable_group_offload(**group_offload_kwargs)
|
|
pipe.transformer.compile()
|
|
for name, component in pipe.components.items():
|
|
if name != "transformer" and isinstance(component, torch.nn.Module):
|
|
if torch.device(component.device).type == "cpu":
|
|
component.to("cuda")
|
|
|
|
for _ in range(2):
|
|
# small resolutions to ensure speedy execution.
|
|
pipe("a dog", num_inference_steps=3, max_sequence_length=16, height=256, width=256)
|