mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
2367 lines
108 KiB
Python
2367 lines
108 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# Based on [AnyText: Multilingual Visual Text Generation And Editing](https://huggingface.co/papers/2311.03054).
|
|
# Authors: Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, Xuansong Xie
|
|
# Code: https://github.com/tyxsspa/AnyText with Apache-2.0 license
|
|
#
|
|
# Adapted to Diffusers by [M. Tolga Cangöz](https://github.com/tolgacangoz).
|
|
|
|
|
|
import inspect
|
|
import math
|
|
import os
|
|
import re
|
|
import sys
|
|
import unicodedata
|
|
from functools import partial
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from huggingface_hub import hf_hub_download
|
|
from ocr_recog.RecModel import RecModel
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
from safetensors.torch import load_file
|
|
from skimage.transform._geometric import _umeyama as get_sym_mat
|
|
from torch import nn
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
|
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import (
|
|
FromSingleFileMixin,
|
|
IPAdapterMixin,
|
|
StableDiffusionLoraLoaderMixin,
|
|
TextualInversionLoaderMixin,
|
|
)
|
|
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
deprecate,
|
|
logging,
|
|
replace_example_docstring,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.constants import HF_MODULES_CACHE
|
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
|
|
|
|
|
class Checker:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def _is_chinese_char(self, cp):
|
|
"""Checks whether CP is the codepoint of a CJK character."""
|
|
# This defines a "chinese character" as anything in the CJK Unicode block:
|
|
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
|
#
|
|
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
|
# despite its name. The modern Korean Hangul alphabet is a different block,
|
|
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
|
# space-separated words, so they are not treated specially and handled
|
|
# like the all of the other languages.
|
|
if (
|
|
(cp >= 0x4E00 and cp <= 0x9FFF)
|
|
or (cp >= 0x3400 and cp <= 0x4DBF)
|
|
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
|
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
|
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
|
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
|
or (cp >= 0xF900 and cp <= 0xFAFF)
|
|
or (cp >= 0x2F800 and cp <= 0x2FA1F)
|
|
):
|
|
return True
|
|
|
|
return False
|
|
|
|
def _clean_text(self, text):
|
|
"""Performs invalid character removal and whitespace cleanup on text."""
|
|
output = []
|
|
for char in text:
|
|
cp = ord(char)
|
|
if cp == 0 or cp == 0xFFFD or self._is_control(char):
|
|
continue
|
|
if self._is_whitespace(char):
|
|
output.append(" ")
|
|
else:
|
|
output.append(char)
|
|
return "".join(output)
|
|
|
|
def _is_control(self, char):
|
|
"""Checks whether `chars` is a control character."""
|
|
# These are technically control characters but we count them as whitespace
|
|
# characters.
|
|
if char == "\t" or char == "\n" or char == "\r":
|
|
return False
|
|
cat = unicodedata.category(char)
|
|
if cat in ("Cc", "Cf"):
|
|
return True
|
|
return False
|
|
|
|
def _is_whitespace(self, char):
|
|
"""Checks whether `chars` is a whitespace character."""
|
|
# \t, \n, and \r are technically control characters but we treat them
|
|
# as whitespace since they are generally considered as such.
|
|
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
|
return True
|
|
cat = unicodedata.category(char)
|
|
if cat == "Zs":
|
|
return True
|
|
return False
|
|
|
|
|
|
checker = Checker()
|
|
|
|
|
|
PLACE_HOLDER = "*"
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> # This example requires the `anytext_controlnet.py` file:
|
|
>>> # !git clone --depth 1 https://github.com/huggingface/diffusers.git
|
|
>>> # %cd diffusers/examples/research_projects/anytext
|
|
>>> # Let's choose a font file shared by an HF staff:
|
|
>>> # !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf
|
|
|
|
>>> import torch
|
|
>>> from diffusers import DiffusionPipeline
|
|
>>> from anytext_controlnet import AnyTextControlNetModel
|
|
>>> from diffusers.utils import load_image
|
|
|
|
>>> anytext_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16,
|
|
... variant="fp16",)
|
|
>>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/anytext", font_path="arial-unicode-ms.ttf",
|
|
... controlnet=anytext_controlnet, torch_dtype=torch.float16,
|
|
... trust_remote_code=False, # One needs to give permission to run this pipeline's code
|
|
... ).to("cuda")
|
|
|
|
|
|
>>> # generate image
|
|
>>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream'
|
|
>>> draw_pos = load_image("https://raw.githubusercontent.com/tyxsspa/AnyText/refs/heads/main/example_images/gen9.png")
|
|
>>> # There are two modes: "generate" and "edit". "edit" mode requires `ori_image` parameter for the image to be edited.
|
|
>>> image = pipe(prompt, num_inference_steps=20, mode="generate", draw_pos=draw_pos,
|
|
... ).images[0]
|
|
>>> image
|
|
```
|
|
"""
|
|
|
|
|
|
def get_clip_token_for_string(tokenizer, string):
|
|
batch_encoding = tokenizer(
|
|
string,
|
|
truncation=True,
|
|
max_length=77,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
)
|
|
tokens = batch_encoding["input_ids"]
|
|
assert torch.count_nonzero(tokens - 49407) == 2, (
|
|
f"String '{string}' maps to more than a single token. Please use another string"
|
|
)
|
|
return tokens[0, 1]
|
|
|
|
|
|
def get_recog_emb(encoder, img_list):
|
|
_img_list = [(img.repeat(1, 3, 1, 1) * 255)[0] for img in img_list]
|
|
encoder.predictor.eval()
|
|
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False)
|
|
return preds_neck
|
|
|
|
|
|
class EmbeddingManager(ModelMixin, ConfigMixin):
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
embedder,
|
|
placeholder_string="*",
|
|
use_fp16=False,
|
|
token_dim=768,
|
|
get_recog_emb=None,
|
|
):
|
|
super().__init__()
|
|
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
|
|
|
|
self.proj = nn.Linear(40 * 64, token_dim)
|
|
proj_dir = hf_hub_download(
|
|
repo_id="tolgacangoz/anytext",
|
|
filename="text_embedding_module/proj.safetensors",
|
|
cache_dir=HF_MODULES_CACHE,
|
|
)
|
|
self.proj.load_state_dict(load_file(proj_dir, device=str(embedder.device)))
|
|
if use_fp16:
|
|
self.proj = self.proj.to(dtype=torch.float16)
|
|
|
|
self.placeholder_token = get_token_for_string(placeholder_string)
|
|
|
|
@torch.no_grad()
|
|
def encode_text(self, text_info):
|
|
if self.config.get_recog_emb is None:
|
|
self.config.get_recog_emb = partial(get_recog_emb, self.recog)
|
|
|
|
gline_list = []
|
|
for i in range(len(text_info["n_lines"])): # sample index in a batch
|
|
n_lines = text_info["n_lines"][i]
|
|
for j in range(n_lines): # line
|
|
gline_list += [text_info["gly_line"][j][i : i + 1]]
|
|
|
|
if len(gline_list) > 0:
|
|
recog_emb = self.config.get_recog_emb(gline_list)
|
|
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1).to(self.proj.weight.dtype))
|
|
|
|
self.text_embs_all = []
|
|
n_idx = 0
|
|
for i in range(len(text_info["n_lines"])): # sample index in a batch
|
|
n_lines = text_info["n_lines"][i]
|
|
text_embs = []
|
|
for j in range(n_lines): # line
|
|
text_embs += [enc_glyph[n_idx : n_idx + 1]]
|
|
n_idx += 1
|
|
self.text_embs_all += [text_embs]
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
tokenized_text,
|
|
embedded_text,
|
|
):
|
|
b, device = tokenized_text.shape[0], tokenized_text.device
|
|
for i in range(b):
|
|
idx = tokenized_text[i] == self.placeholder_token.to(device)
|
|
if sum(idx) > 0:
|
|
if i >= len(self.text_embs_all):
|
|
logger.warning("truncation for log images...")
|
|
break
|
|
text_emb = torch.cat(self.text_embs_all[i], dim=0)
|
|
if sum(idx) != len(text_emb):
|
|
logger.warning("truncation for long caption...")
|
|
text_emb = text_emb.to(embedded_text.device)
|
|
embedded_text[i][idx] = text_emb[: sum(idx)]
|
|
return embedded_text
|
|
|
|
def embedding_parameters(self):
|
|
return self.parameters()
|
|
|
|
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
|
|
|
|
|
def min_bounding_rect(img):
|
|
ret, thresh = cv2.threshold(img, 127, 255, 0)
|
|
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
if len(contours) == 0:
|
|
print("Bad contours, using fake bbox...")
|
|
return np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
|
|
max_contour = max(contours, key=cv2.contourArea)
|
|
rect = cv2.minAreaRect(max_contour)
|
|
box = cv2.boxPoints(rect)
|
|
box = np.int0(box)
|
|
# sort
|
|
x_sorted = sorted(box, key=lambda x: x[0])
|
|
left = x_sorted[:2]
|
|
right = x_sorted[2:]
|
|
left = sorted(left, key=lambda x: x[1])
|
|
(tl, bl) = left
|
|
right = sorted(right, key=lambda x: x[1])
|
|
(tr, br) = right
|
|
if tl[1] > bl[1]:
|
|
(tl, bl) = (bl, tl)
|
|
if tr[1] > br[1]:
|
|
(tr, br) = (br, tr)
|
|
return np.array([tl, tr, br, bl])
|
|
|
|
|
|
def adjust_image(box, img):
|
|
pts1 = np.float32([box[0], box[1], box[2], box[3]])
|
|
width = max(np.linalg.norm(pts1[0] - pts1[1]), np.linalg.norm(pts1[2] - pts1[3]))
|
|
height = max(np.linalg.norm(pts1[0] - pts1[3]), np.linalg.norm(pts1[1] - pts1[2]))
|
|
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
|
|
# get transform matrix
|
|
M = get_sym_mat(pts1, pts2, estimate_scale=True)
|
|
C, H, W = img.shape
|
|
T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]])
|
|
theta = np.linalg.inv(T @ M @ np.linalg.inv(T))
|
|
theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device)
|
|
grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True)
|
|
result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True)
|
|
result = torch.clamp(result.squeeze(0), 0, 255)
|
|
# crop
|
|
result = result[:, : int(height), : int(width)]
|
|
return result
|
|
|
|
|
|
def crop_image(src_img, mask):
|
|
box = min_bounding_rect(mask)
|
|
result = adjust_image(box, src_img)
|
|
if len(result.shape) == 2:
|
|
result = torch.stack([result] * 3, axis=-1)
|
|
return result
|
|
|
|
|
|
def create_predictor(model_lang="ch", device="cpu", use_fp16=False):
|
|
model_dir = hf_hub_download(
|
|
repo_id="tolgacangoz/anytext",
|
|
filename="text_embedding_module/OCR/ppv3_rec.pth",
|
|
cache_dir=HF_MODULES_CACHE,
|
|
)
|
|
if not os.path.exists(model_dir):
|
|
raise ValueError("not find model file path {}".format(model_dir))
|
|
|
|
if model_lang == "ch":
|
|
n_class = 6625
|
|
elif model_lang == "en":
|
|
n_class = 97
|
|
else:
|
|
raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}")
|
|
rec_config = {
|
|
"in_channels": 3,
|
|
"backbone": {"type": "MobileNetV1Enhance", "scale": 0.5, "last_conv_stride": [1, 2], "last_pool_type": "avg"},
|
|
"neck": {
|
|
"type": "SequenceEncoder",
|
|
"encoder_type": "svtr",
|
|
"dims": 64,
|
|
"depth": 2,
|
|
"hidden_dims": 120,
|
|
"use_guide": True,
|
|
},
|
|
"head": {"type": "CTCHead", "fc_decay": 0.00001, "out_channels": n_class, "return_feats": True},
|
|
}
|
|
|
|
rec_model = RecModel(rec_config)
|
|
state_dict = torch.load(model_dir, map_location=device)
|
|
rec_model.load_state_dict(state_dict)
|
|
return rec_model
|
|
|
|
|
|
def _check_image_file(path):
|
|
img_end = ("tiff", "tif", "bmp", "rgb", "jpg", "png", "jpeg")
|
|
return path.lower().endswith(tuple(img_end))
|
|
|
|
|
|
def get_image_file_list(img_file):
|
|
imgs_lists = []
|
|
if img_file is None or not os.path.exists(img_file):
|
|
raise Exception("not found any img file in {}".format(img_file))
|
|
if os.path.isfile(img_file) and _check_image_file(img_file):
|
|
imgs_lists.append(img_file)
|
|
elif os.path.isdir(img_file):
|
|
for single_file in os.listdir(img_file):
|
|
file_path = os.path.join(img_file, single_file)
|
|
if os.path.isfile(file_path) and _check_image_file(file_path):
|
|
imgs_lists.append(file_path)
|
|
if len(imgs_lists) == 0:
|
|
raise Exception("not found any img file in {}".format(img_file))
|
|
imgs_lists = sorted(imgs_lists)
|
|
return imgs_lists
|
|
|
|
|
|
class TextRecognizer(object):
|
|
def __init__(self, args, predictor):
|
|
self.rec_image_shape = [int(v) for v in args["rec_image_shape"].split(",")]
|
|
self.rec_batch_num = args["rec_batch_num"]
|
|
self.predictor = predictor
|
|
self.chars = self.get_char_dict(args["rec_char_dict_path"])
|
|
self.char2id = {x: i for i, x in enumerate(self.chars)}
|
|
self.is_onnx = not isinstance(self.predictor, torch.nn.Module)
|
|
self.use_fp16 = args["use_fp16"]
|
|
|
|
# img: CHW
|
|
def resize_norm_img(self, img, max_wh_ratio):
|
|
imgC, imgH, imgW = self.rec_image_shape
|
|
assert imgC == img.shape[0]
|
|
imgW = int((imgH * max_wh_ratio))
|
|
|
|
h, w = img.shape[1:]
|
|
ratio = w / float(h)
|
|
if math.ceil(imgH * ratio) > imgW:
|
|
resized_w = imgW
|
|
else:
|
|
resized_w = int(math.ceil(imgH * ratio))
|
|
resized_image = torch.nn.functional.interpolate(
|
|
img.unsqueeze(0),
|
|
size=(imgH, resized_w),
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
resized_image /= 255.0
|
|
resized_image -= 0.5
|
|
resized_image /= 0.5
|
|
padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device)
|
|
padding_im[:, :, 0:resized_w] = resized_image[0]
|
|
return padding_im
|
|
|
|
# img_list: list of tensors with shape chw 0-255
|
|
def pred_imglist(self, img_list, show_debug=False):
|
|
img_num = len(img_list)
|
|
assert img_num > 0
|
|
# Calculate the aspect ratio of all text bars
|
|
width_list = []
|
|
for img in img_list:
|
|
width_list.append(img.shape[2] / float(img.shape[1]))
|
|
# Sorting can speed up the recognition process
|
|
indices = torch.from_numpy(np.argsort(np.array(width_list)))
|
|
batch_num = self.rec_batch_num
|
|
preds_all = [None] * img_num
|
|
preds_neck_all = [None] * img_num
|
|
for beg_img_no in range(0, img_num, batch_num):
|
|
end_img_no = min(img_num, beg_img_no + batch_num)
|
|
norm_img_batch = []
|
|
|
|
imgC, imgH, imgW = self.rec_image_shape[:3]
|
|
max_wh_ratio = imgW / imgH
|
|
for ino in range(beg_img_no, end_img_no):
|
|
h, w = img_list[indices[ino]].shape[1:]
|
|
if h > w * 1.2:
|
|
img = img_list[indices[ino]]
|
|
img = torch.transpose(img, 1, 2).flip(dims=[1])
|
|
img_list[indices[ino]] = img
|
|
h, w = img.shape[1:]
|
|
# wh_ratio = w * 1.0 / h
|
|
# max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio
|
|
for ino in range(beg_img_no, end_img_no):
|
|
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
|
|
if self.use_fp16:
|
|
norm_img = norm_img.half()
|
|
norm_img = norm_img.unsqueeze(0)
|
|
norm_img_batch.append(norm_img)
|
|
norm_img_batch = torch.cat(norm_img_batch, dim=0)
|
|
if show_debug:
|
|
for i in range(len(norm_img_batch)):
|
|
_img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy()
|
|
_img = (_img + 0.5) * 255
|
|
_img = _img[:, :, ::-1]
|
|
file_name = f"{indices[beg_img_no + i]}"
|
|
if os.path.exists(file_name + ".jpg"):
|
|
file_name += "_2" # ori image
|
|
cv2.imwrite(file_name + ".jpg", _img)
|
|
if self.is_onnx:
|
|
input_dict = {}
|
|
input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy()
|
|
outputs = self.predictor.run(None, input_dict)
|
|
preds = {}
|
|
preds["ctc"] = torch.from_numpy(outputs[0])
|
|
preds["ctc_neck"] = [torch.zeros(1)] * img_num
|
|
else:
|
|
preds = self.predictor(norm_img_batch.to(next(self.predictor.parameters()).device))
|
|
for rno in range(preds["ctc"].shape[0]):
|
|
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno]
|
|
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno]
|
|
|
|
return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0)
|
|
|
|
def get_char_dict(self, character_dict_path):
|
|
character_str = []
|
|
with open(character_dict_path, "rb") as fin:
|
|
lines = fin.readlines()
|
|
for line in lines:
|
|
line = line.decode("utf-8").strip("\n").strip("\r\n")
|
|
character_str.append(line)
|
|
dict_character = list(character_str)
|
|
dict_character = ["sos"] + dict_character + [" "] # eos is space
|
|
return dict_character
|
|
|
|
def get_text(self, order):
|
|
char_list = [self.chars[text_id] for text_id in order]
|
|
return "".join(char_list)
|
|
|
|
def decode(self, mat):
|
|
text_index = mat.detach().cpu().numpy().argmax(axis=1)
|
|
ignored_tokens = [0]
|
|
selection = np.ones(len(text_index), dtype=bool)
|
|
selection[1:] = text_index[1:] != text_index[:-1]
|
|
for ignored_token in ignored_tokens:
|
|
selection &= text_index != ignored_token
|
|
return text_index[selection], np.where(selection)[0]
|
|
|
|
def get_ctcloss(self, preds, gt_text, weight):
|
|
if not isinstance(weight, torch.Tensor):
|
|
weight = torch.tensor(weight).to(preds.device)
|
|
ctc_loss = torch.nn.CTCLoss(reduction="none")
|
|
log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC
|
|
targets = []
|
|
target_lengths = []
|
|
for t in gt_text:
|
|
targets += [self.char2id.get(i, len(self.chars) - 1) for i in t]
|
|
target_lengths += [len(t)]
|
|
targets = torch.tensor(targets).to(preds.device)
|
|
target_lengths = torch.tensor(target_lengths).to(preds.device)
|
|
input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(preds.device)
|
|
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
|
|
loss = loss / input_lengths * weight
|
|
return loss
|
|
|
|
|
|
class AbstractEncoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def encode(self, *args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
|
|
class FrozenCLIPEmbedderT3(AbstractEncoder, ModelMixin, ConfigMixin):
|
|
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
device="cpu",
|
|
max_length=77,
|
|
freeze=True,
|
|
use_fp16=False,
|
|
variant: Optional[str] = None,
|
|
):
|
|
super().__init__()
|
|
self.tokenizer = CLIPTokenizer.from_pretrained("tolgacangoz/anytext", subfolder="tokenizer")
|
|
self.transformer = CLIPTextModel.from_pretrained(
|
|
"tolgacangoz/anytext",
|
|
subfolder="text_encoder",
|
|
torch_dtype=torch.float16 if use_fp16 else torch.float32,
|
|
variant="fp16" if use_fp16 else None,
|
|
)
|
|
|
|
if freeze:
|
|
self.freeze()
|
|
|
|
def embedding_forward(
|
|
self,
|
|
input_ids=None,
|
|
position_ids=None,
|
|
inputs_embeds=None,
|
|
embedding_manager=None,
|
|
):
|
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
|
if position_ids is None:
|
|
position_ids = self.position_ids[:, :seq_length]
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.token_embedding(input_ids)
|
|
if embedding_manager is not None:
|
|
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
|
position_embeddings = self.position_embedding(position_ids)
|
|
embeddings = inputs_embeds + position_embeddings
|
|
return embeddings
|
|
|
|
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
|
|
self.transformer.text_model.embeddings
|
|
)
|
|
|
|
def encoder_forward(
|
|
self,
|
|
inputs_embeds,
|
|
attention_mask=None,
|
|
causal_attention_mask=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
hidden_states = inputs_embeds
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = layer_outputs[0]
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
return hidden_states
|
|
|
|
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
|
|
|
|
def text_encoder_forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
position_ids=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
embedding_manager=None,
|
|
):
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
if input_ids is None:
|
|
raise ValueError("You have to specify either input_ids")
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
hidden_states = self.embeddings(
|
|
input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager
|
|
)
|
|
# CLIP's text model uses causal mask, prepare it here.
|
|
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
|
causal_attention_mask = _create_4d_causal_attention_mask(
|
|
input_shape, hidden_states.dtype, device=hidden_states.device
|
|
)
|
|
# expand attention_mask
|
|
if attention_mask is not None:
|
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
|
last_hidden_state = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
attention_mask=attention_mask,
|
|
causal_attention_mask=causal_attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
|
return last_hidden_state
|
|
|
|
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
|
|
|
|
def transformer_forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
position_ids=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
embedding_manager=None,
|
|
):
|
|
return self.text_model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
embedding_manager=embedding_manager,
|
|
)
|
|
|
|
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text, **kwargs):
|
|
batch_encoding = self.tokenizer(
|
|
text,
|
|
truncation=False,
|
|
max_length=self.config.max_length,
|
|
return_length=True,
|
|
return_overflowing_tokens=False,
|
|
padding="longest",
|
|
return_tensors="pt",
|
|
)
|
|
input_ids = batch_encoding["input_ids"]
|
|
tokens_list = self.split_chunks(input_ids)
|
|
z_list = []
|
|
for tokens in tokens_list:
|
|
tokens = tokens.to(self.device)
|
|
_z = self.transformer(input_ids=tokens, **kwargs)
|
|
z_list += [_z]
|
|
return torch.cat(z_list, dim=1)
|
|
|
|
def encode(self, text, **kwargs):
|
|
return self(text, **kwargs)
|
|
|
|
def split_chunks(self, input_ids, chunk_size=75):
|
|
tokens_list = []
|
|
bs, n = input_ids.shape
|
|
id_start = input_ids[:, 0].unsqueeze(1) # dim --> [bs, 1]
|
|
id_end = input_ids[:, -1].unsqueeze(1)
|
|
if n == 2: # empty caption
|
|
tokens_list.append(torch.cat((id_start,) + (id_end,) * (chunk_size + 1), dim=1))
|
|
|
|
trimmed_encoding = input_ids[:, 1:-1]
|
|
num_full_groups = (n - 2) // chunk_size
|
|
|
|
for i in range(num_full_groups):
|
|
group = trimmed_encoding[:, i * chunk_size : (i + 1) * chunk_size]
|
|
group_pad = torch.cat((id_start, group, id_end), dim=1)
|
|
tokens_list.append(group_pad)
|
|
|
|
remaining_columns = (n - 2) % chunk_size
|
|
if remaining_columns > 0:
|
|
remaining_group = trimmed_encoding[:, -remaining_columns:]
|
|
padding_columns = chunk_size - remaining_group.shape[1]
|
|
padding = id_end.expand(bs, padding_columns)
|
|
remaining_group_pad = torch.cat((id_start, remaining_group, padding, id_end), dim=1)
|
|
tokens_list.append(remaining_group_pad)
|
|
return tokens_list
|
|
|
|
|
|
class TextEmbeddingModule(ModelMixin, ConfigMixin):
|
|
@register_to_config
|
|
def __init__(self, font_path, use_fp16=False, device="cpu"):
|
|
super().__init__()
|
|
font = ImageFont.truetype(font_path, 60)
|
|
|
|
self.frozen_CLIP_embedder_t3 = FrozenCLIPEmbedderT3(device=device, use_fp16=use_fp16)
|
|
self.embedding_manager = EmbeddingManager(self.frozen_CLIP_embedder_t3, use_fp16=use_fp16)
|
|
self.text_predictor = create_predictor(device=device, use_fp16=use_fp16).eval()
|
|
args = {
|
|
"rec_image_shape": "3, 48, 320",
|
|
"rec_batch_num": 6,
|
|
"rec_char_dict_path": hf_hub_download(
|
|
repo_id="tolgacangoz/anytext",
|
|
filename="text_embedding_module/OCR/ppocr_keys_v1.txt",
|
|
cache_dir=HF_MODULES_CACHE,
|
|
),
|
|
"use_fp16": use_fp16,
|
|
}
|
|
self.embedding_manager.recog = TextRecognizer(args, self.text_predictor)
|
|
|
|
self.register_to_config(font=font)
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
prompt,
|
|
texts,
|
|
negative_prompt,
|
|
num_images_per_prompt,
|
|
mode,
|
|
draw_pos,
|
|
sort_priority="↕",
|
|
max_chars=77,
|
|
revise_pos=False,
|
|
h=512,
|
|
w=512,
|
|
):
|
|
if prompt is None and texts is None:
|
|
raise ValueError("Prompt or texts must be provided!")
|
|
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
|
|
if draw_pos is None:
|
|
pos_imgs = np.zeros((w, h, 1))
|
|
if isinstance(draw_pos, PIL.Image.Image):
|
|
pos_imgs = np.array(draw_pos)[..., ::-1]
|
|
pos_imgs = 255 - pos_imgs
|
|
elif isinstance(draw_pos, str):
|
|
draw_pos = cv2.imread(draw_pos)[..., ::-1]
|
|
if draw_pos is None:
|
|
raise ValueError(f"Can't read draw_pos image from {draw_pos}!")
|
|
pos_imgs = 255 - draw_pos
|
|
elif isinstance(draw_pos, torch.Tensor):
|
|
pos_imgs = draw_pos.cpu().numpy()
|
|
else:
|
|
if not isinstance(draw_pos, np.ndarray):
|
|
raise ValueError(f"Unknown format of draw_pos: {type(draw_pos)}")
|
|
if mode == "edit":
|
|
pos_imgs = cv2.resize(pos_imgs, (w, h))
|
|
pos_imgs = pos_imgs[..., 0:1]
|
|
pos_imgs = cv2.convertScaleAbs(pos_imgs)
|
|
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
|
|
# separate pos_imgs
|
|
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
|
|
if len(pos_imgs) == 0:
|
|
pos_imgs = [np.zeros((h, w, 1))]
|
|
n_lines = len(texts)
|
|
if len(pos_imgs) < n_lines:
|
|
if n_lines == 1 and texts[0] == " ":
|
|
pass # text-to-image without text
|
|
else:
|
|
raise ValueError(
|
|
f"Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!"
|
|
)
|
|
elif len(pos_imgs) > n_lines:
|
|
str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt."
|
|
logger.warning(str_warning)
|
|
# get pre_pos, poly_list, hint that needed for anytext
|
|
pre_pos = []
|
|
poly_list = []
|
|
for input_pos in pos_imgs:
|
|
if input_pos.mean() != 0:
|
|
input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos
|
|
poly, pos_img = self.find_polygon(input_pos)
|
|
pre_pos += [pos_img / 255.0]
|
|
poly_list += [poly]
|
|
else:
|
|
pre_pos += [np.zeros((h, w, 1))]
|
|
poly_list += [None]
|
|
np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
|
|
# prepare info dict
|
|
text_info = {}
|
|
text_info["glyphs"] = []
|
|
text_info["gly_line"] = []
|
|
text_info["positions"] = []
|
|
text_info["n_lines"] = [len(texts)] * num_images_per_prompt
|
|
for i in range(len(texts)):
|
|
text = texts[i]
|
|
if len(text) > max_chars:
|
|
str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...'
|
|
logger.warning(str_warning)
|
|
text = text[:max_chars]
|
|
gly_scale = 2
|
|
if pre_pos[i].mean() != 0:
|
|
gly_line = self.draw_glyph(self.config.font, text)
|
|
glyphs = self.draw_glyph2(
|
|
self.config.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False
|
|
)
|
|
if revise_pos:
|
|
resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0]))
|
|
new_pos = cv2.morphologyEx(
|
|
(resize_gly * 255).astype(np.uint8),
|
|
cv2.MORPH_CLOSE,
|
|
kernel=np.ones((resize_gly.shape[0] // 10, resize_gly.shape[1] // 10), dtype=np.uint8),
|
|
iterations=1,
|
|
)
|
|
new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
|
|
contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
|
if len(contours) != 1:
|
|
str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..."
|
|
logger.warning(str_warning)
|
|
else:
|
|
rect = cv2.minAreaRect(contours[0])
|
|
poly = np.int0(cv2.boxPoints(rect))
|
|
pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0
|
|
else:
|
|
glyphs = np.zeros((h * gly_scale, w * gly_scale, 1))
|
|
gly_line = np.zeros((80, 512, 1))
|
|
pos = pre_pos[i]
|
|
text_info["glyphs"] += [self.arr2tensor(glyphs, num_images_per_prompt)]
|
|
text_info["gly_line"] += [self.arr2tensor(gly_line, num_images_per_prompt)]
|
|
text_info["positions"] += [self.arr2tensor(pos, num_images_per_prompt)]
|
|
|
|
self.embedding_manager.encode_text(text_info)
|
|
prompt_embeds = self.frozen_CLIP_embedder_t3.encode([prompt], embedding_manager=self.embedding_manager)
|
|
|
|
self.embedding_manager.encode_text(text_info)
|
|
negative_prompt_embeds = self.frozen_CLIP_embedder_t3.encode(
|
|
[negative_prompt or ""], embedding_manager=self.embedding_manager
|
|
)
|
|
|
|
return prompt_embeds, negative_prompt_embeds, text_info, np_hint
|
|
|
|
def arr2tensor(self, arr, bs):
|
|
arr = np.transpose(arr, (2, 0, 1))
|
|
_arr = torch.from_numpy(arr.copy()).float().cpu()
|
|
if self.config.use_fp16:
|
|
_arr = _arr.half()
|
|
_arr = torch.stack([_arr for _ in range(bs)], dim=0)
|
|
return _arr
|
|
|
|
def separate_pos_imgs(self, img, sort_priority, gap=102):
|
|
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
|
|
components = []
|
|
for label in range(1, num_labels):
|
|
component = np.zeros_like(img)
|
|
component[labels == label] = 255
|
|
components.append((component, centroids[label]))
|
|
if sort_priority == "↕":
|
|
fir, sec = 1, 0 # top-down first
|
|
elif sort_priority == "↔":
|
|
fir, sec = 0, 1 # left-right first
|
|
else:
|
|
raise ValueError(f"Unknown sort_priority: {sort_priority}")
|
|
components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap))
|
|
sorted_components = [c[0] for c in components]
|
|
return sorted_components
|
|
|
|
def find_polygon(self, image, min_rect=False):
|
|
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
|
max_contour = max(contours, key=cv2.contourArea) # get contour with max area
|
|
if min_rect:
|
|
# get minimum enclosing rectangle
|
|
rect = cv2.minAreaRect(max_contour)
|
|
poly = np.int0(cv2.boxPoints(rect))
|
|
else:
|
|
# get approximate polygon
|
|
epsilon = 0.01 * cv2.arcLength(max_contour, True)
|
|
poly = cv2.approxPolyDP(max_contour, epsilon, True)
|
|
n, _, xy = poly.shape
|
|
poly = poly.reshape(n, xy)
|
|
cv2.drawContours(image, [poly], -1, 255, -1)
|
|
return poly, image
|
|
|
|
def draw_glyph(self, font, text):
|
|
g_size = 50
|
|
W, H = (512, 80)
|
|
new_font = font.font_variant(size=g_size)
|
|
img = Image.new(mode="1", size=(W, H), color=0)
|
|
draw = ImageDraw.Draw(img)
|
|
left, top, right, bottom = new_font.getbbox(text)
|
|
text_width = max(right - left, 5)
|
|
text_height = max(bottom - top, 5)
|
|
ratio = min(W * 0.9 / text_width, H * 0.9 / text_height)
|
|
new_font = font.font_variant(size=int(g_size * ratio))
|
|
|
|
left, top, right, bottom = new_font.getbbox(text)
|
|
text_width = right - left
|
|
text_height = bottom - top
|
|
x = (img.width - text_width) // 2
|
|
y = (img.height - text_height) // 2 - top // 2
|
|
draw.text((x, y), text, font=new_font, fill="white")
|
|
img = np.expand_dims(np.array(img), axis=2).astype(np.float64)
|
|
return img
|
|
|
|
def draw_glyph2(self, font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True):
|
|
enlarge_polygon = polygon * scale
|
|
rect = cv2.minAreaRect(enlarge_polygon)
|
|
box = cv2.boxPoints(rect)
|
|
box = np.int0(box)
|
|
w, h = rect[1]
|
|
angle = rect[2]
|
|
if angle < -45:
|
|
angle += 90
|
|
angle = -angle
|
|
if w < h:
|
|
angle += 90
|
|
|
|
vert = False
|
|
if abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng:
|
|
_w = max(box[:, 0]) - min(box[:, 0])
|
|
_h = max(box[:, 1]) - min(box[:, 1])
|
|
if _h >= _w:
|
|
vert = True
|
|
angle = 0
|
|
|
|
img = np.zeros((height * scale, width * scale, 3), np.uint8)
|
|
img = Image.fromarray(img)
|
|
|
|
# infer font size
|
|
image4ratio = Image.new("RGB", img.size, "white")
|
|
draw = ImageDraw.Draw(image4ratio)
|
|
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font)
|
|
text_w = min(w, h) * (_tw / _th)
|
|
if text_w <= max(w, h):
|
|
# add space
|
|
if len(text) > 1 and not vert and add_space:
|
|
for i in range(1, 100):
|
|
text_space = self.insert_spaces(text, i)
|
|
_, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font)
|
|
if min(w, h) * (_tw2 / _th2) > max(w, h):
|
|
break
|
|
text = self.insert_spaces(text, i - 1)
|
|
font_size = min(w, h) * 0.80
|
|
else:
|
|
shrink = 0.75 if vert else 0.85
|
|
font_size = min(w, h) / (text_w / max(w, h)) * shrink
|
|
new_font = font.font_variant(size=int(font_size))
|
|
|
|
left, top, right, bottom = new_font.getbbox(text)
|
|
text_width = right - left
|
|
text_height = bottom - top
|
|
|
|
layer = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
|
draw = ImageDraw.Draw(layer)
|
|
if not vert:
|
|
draw.text(
|
|
(rect[0][0] - text_width // 2, rect[0][1] - text_height // 2 - top),
|
|
text,
|
|
font=new_font,
|
|
fill=(255, 255, 255, 255),
|
|
)
|
|
else:
|
|
x_s = min(box[:, 0]) + _w // 2 - text_height // 2
|
|
y_s = min(box[:, 1])
|
|
for c in text:
|
|
draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
|
|
_, _t, _, _b = new_font.getbbox(c)
|
|
y_s += _b
|
|
|
|
rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1]))
|
|
|
|
x_offset = int((img.width - rotated_layer.width) / 2)
|
|
y_offset = int((img.height - rotated_layer.height) / 2)
|
|
img.paste(rotated_layer, (x_offset, y_offset), rotated_layer)
|
|
img = np.expand_dims(np.array(img.convert("1")), axis=2).astype(np.float64)
|
|
return img
|
|
|
|
def insert_spaces(self, string, nSpace):
|
|
if nSpace == 0:
|
|
return string
|
|
new_string = ""
|
|
for char in string:
|
|
new_string += char + " " * nSpace
|
|
return new_string[:-nSpace]
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
|
def retrieve_latents(
|
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
|
):
|
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
|
return encoder_output.latent_dist.sample(generator)
|
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
|
return encoder_output.latent_dist.mode()
|
|
elif hasattr(encoder_output, "latents"):
|
|
return encoder_output.latents
|
|
else:
|
|
raise AttributeError("Could not access latents of provided encoder_output")
|
|
|
|
|
|
class AuxiliaryLatentModule(ModelMixin, ConfigMixin):
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
vae,
|
|
device="cpu",
|
|
):
|
|
super().__init__()
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
text_info,
|
|
mode,
|
|
draw_pos,
|
|
ori_image,
|
|
num_images_per_prompt,
|
|
np_hint,
|
|
h=512,
|
|
w=512,
|
|
):
|
|
if mode == "generate":
|
|
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
|
|
elif mode == "edit":
|
|
if draw_pos is None or ori_image is None:
|
|
raise ValueError("Reference image and position image are needed for text editing!")
|
|
if isinstance(ori_image, str):
|
|
ori_image = cv2.imread(ori_image)[..., ::-1]
|
|
if ori_image is None:
|
|
raise ValueError(f"Can't read ori_image image from {ori_image}!")
|
|
elif isinstance(ori_image, torch.Tensor):
|
|
ori_image = ori_image.cpu().numpy()
|
|
elif isinstance(ori_image, PIL.Image.Image):
|
|
ori_image = np.array(ori_image.convert("RGB"))
|
|
else:
|
|
if not isinstance(ori_image, np.ndarray):
|
|
raise ValueError(f"Unknown format of ori_image: {type(ori_image)}")
|
|
edit_image = ori_image.clip(1, 255) # for mask reason
|
|
edit_image = self.check_channels(edit_image)
|
|
edit_image = self.resize_image(
|
|
edit_image, max_length=768
|
|
) # make w h multiple of 64, resize if w or h > max_length
|
|
|
|
# get masked_x
|
|
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
|
|
masked_img = np.transpose(masked_img, (2, 0, 1))
|
|
device = next(self.config.vae.parameters()).device
|
|
dtype = next(self.config.vae.parameters()).dtype
|
|
masked_img = torch.from_numpy(masked_img.copy()).float().to(device)
|
|
if dtype == torch.float16:
|
|
masked_img = masked_img.half()
|
|
masked_x = (
|
|
retrieve_latents(self.config.vae.encode(masked_img[None, ...])) * self.config.vae.config.scaling_factor
|
|
).detach()
|
|
if dtype == torch.float16:
|
|
masked_x = masked_x.half()
|
|
text_info["masked_x"] = torch.cat([masked_x for _ in range(num_images_per_prompt)], dim=0)
|
|
|
|
glyphs = torch.cat(text_info["glyphs"], dim=1).sum(dim=1, keepdim=True)
|
|
positions = torch.cat(text_info["positions"], dim=1).sum(dim=1, keepdim=True)
|
|
|
|
return glyphs, positions, text_info
|
|
|
|
def check_channels(self, image):
|
|
channels = image.shape[2] if len(image.shape) == 3 else 1
|
|
if channels == 1:
|
|
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
|
elif channels > 3:
|
|
image = image[:, :, :3]
|
|
return image
|
|
|
|
def resize_image(self, img, max_length=768):
|
|
height, width = img.shape[:2]
|
|
max_dimension = max(height, width)
|
|
|
|
if max_dimension > max_length:
|
|
scale_factor = max_length / max_dimension
|
|
new_width = int(round(width * scale_factor))
|
|
new_height = int(round(height * scale_factor))
|
|
new_size = (new_width, new_height)
|
|
img = cv2.resize(img, new_size)
|
|
height, width = img.shape[:2]
|
|
img = cv2.resize(img, (width - (width % 64), height - (height % 64)))
|
|
return img
|
|
|
|
def insert_spaces(self, string, nSpace):
|
|
if nSpace == 0:
|
|
return string
|
|
new_string = ""
|
|
for char in string:
|
|
new_string += char + " " * nSpace
|
|
return new_string[:-nSpace]
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class AnyTextPipeline(
|
|
DiffusionPipeline,
|
|
StableDiffusionMixin,
|
|
TextualInversionLoaderMixin,
|
|
StableDiffusionLoraLoaderMixin,
|
|
IPAdapterMixin,
|
|
FromSingleFileMixin,
|
|
):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
|
The pipeline also inherits the following loading methods:
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
|
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
|
text_encoder ([`~transformers.CLIPTextModel`]):
|
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
|
tokenizer ([`~transformers.CLIPTokenizer`]):
|
|
A `CLIPTokenizer` to tokenize text.
|
|
unet ([`UNet2DConditionModel`]):
|
|
A `UNet2DConditionModel` to denoise the encoded image latents.
|
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
|
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
|
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
|
additional conditioning.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
|
|
about a model's potential harms.
|
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
|
"""
|
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
|
_exclude_from_cpu_offload = ["safety_checker"]
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPImageProcessor,
|
|
font_path: str = None,
|
|
text_embedding_module: Optional[TextEmbeddingModule] = None,
|
|
auxiliary_latent_module: Optional[AuxiliaryLatentModule] = None,
|
|
trust_remote_code: bool = False,
|
|
image_encoder: CLIPVisionModelWithProjection = None,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__()
|
|
if font_path is None:
|
|
raise ValueError("font_path is required!")
|
|
|
|
text_embedding_module = TextEmbeddingModule(font_path=font_path, use_fp16=unet.dtype == torch.float16)
|
|
auxiliary_latent_module = AuxiliaryLatentModule(vae=vae)
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
if isinstance(controlnet, (list, tuple)):
|
|
controlnet = MultiControlNetModel(controlnet)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
controlnet=controlnet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
image_encoder=image_encoder,
|
|
text_embedding_module=text_embedding_module,
|
|
auxiliary_latent_module=auxiliary_latent_module,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
|
self.control_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
|
)
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
def modify_prompt(self, prompt):
|
|
prompt = prompt.replace("“", '"')
|
|
prompt = prompt.replace("”", '"')
|
|
p = '"(.*?)"'
|
|
strs = re.findall(p, prompt)
|
|
if len(strs) == 0:
|
|
strs = [" "]
|
|
else:
|
|
for s in strs:
|
|
prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1)
|
|
if self.is_chinese(prompt):
|
|
if self.trans_pipe is None:
|
|
return None, None
|
|
old_prompt = prompt
|
|
prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1]
|
|
print(f"Translate: {old_prompt} --> {prompt}")
|
|
return prompt, strs
|
|
|
|
def is_chinese(self, text):
|
|
text = checker._clean_text(text)
|
|
for char in text:
|
|
cp = ord(char)
|
|
if checker._is_chinese_char(cp):
|
|
return True
|
|
return False
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
**kwargs,
|
|
):
|
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
prompt_embeds_tuple = self.encode_prompt(
|
|
prompt=prompt,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=lora_scale,
|
|
**kwargs,
|
|
)
|
|
|
|
# concatenate for backwards comp
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
|
|
|
return prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
lora_scale (`float`, *optional*):
|
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
# dynamically adjust the LoRA scale
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
|
prompt_embeds = prompt_embeds[0]
|
|
else:
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
|
)
|
|
# Access the `hidden_states` first, that contains a tuple of
|
|
# all the hidden states from the encoder layers. Then index into
|
|
# the tuple to access the hidden states from the desired layer.
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
|
# We also need to apply the final LayerNorm here to not mess with the
|
|
# representations. The `last_hidden_states` that we typically use for
|
|
# obtaining the final prompt representations passes through the LayerNorm
|
|
# layer.
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
|
|
|
if self.text_encoder is not None:
|
|
prompt_embeds_dtype = self.text_encoder.dtype
|
|
elif self.unet is not None:
|
|
prompt_embeds_dtype = self.unet.dtype
|
|
else:
|
|
prompt_embeds_dtype = prompt_embeds.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
if self.text_encoder is not None:
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
|
|
if not isinstance(image, torch.Tensor):
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
if output_hidden_states:
|
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_enc_hidden_states = self.image_encoder(
|
|
torch.zeros_like(image), output_hidden_states=True
|
|
).hidden_states[-2]
|
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
|
num_images_per_prompt, dim=0
|
|
)
|
|
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
|
else:
|
|
image_embeds = self.image_encoder(image).image_embeds
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_embeds = torch.zeros_like(image_embeds)
|
|
|
|
return image_embeds, uncond_image_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
|
def prepare_ip_adapter_image_embeds(
|
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
|
):
|
|
image_embeds = []
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds = []
|
|
if ip_adapter_image_embeds is None:
|
|
if not isinstance(ip_adapter_image, list):
|
|
ip_adapter_image = [ip_adapter_image]
|
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
|
raise ValueError(
|
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
|
)
|
|
|
|
for single_ip_adapter_image, image_proj_layer in zip(
|
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
|
):
|
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
|
single_ip_adapter_image, device, 1, output_hidden_state
|
|
)
|
|
|
|
image_embeds.append(single_image_embeds[None, :])
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
|
else:
|
|
for single_image_embeds in ip_adapter_image_embeds:
|
|
if do_classifier_free_guidance:
|
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
|
negative_image_embeds.append(single_negative_image_embeds)
|
|
image_embeds.append(single_image_embeds)
|
|
|
|
ip_adapter_image_embeds = []
|
|
for i, single_image_embeds in enumerate(image_embeds):
|
|
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
|
if do_classifier_free_guidance:
|
|
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
|
|
|
single_image_embeds = single_image_embeds.to(device=device)
|
|
ip_adapter_image_embeds.append(single_image_embeds)
|
|
|
|
return ip_adapter_image_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
|
def run_safety_checker(self, image, device, dtype):
|
|
if self.safety_checker is None:
|
|
has_nsfw_concept = None
|
|
else:
|
|
if torch.is_tensor(image):
|
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
|
else:
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
return image, has_nsfw_concept
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
|
def decode_latents(self, latents):
|
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
# image,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
ip_adapter_image=None,
|
|
ip_adapter_image_embeds=None,
|
|
controlnet_conditioning_scale=1.0,
|
|
control_guidance_start=0.0,
|
|
control_guidance_end=1.0,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
):
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
# Check `image`
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
|
)
|
|
|
|
# Check `controlnet_conditioning_scale`
|
|
if (
|
|
isinstance(self.controlnet, ControlNetModel)
|
|
or is_compiled
|
|
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
|
):
|
|
if not isinstance(controlnet_conditioning_scale, float):
|
|
print(controlnet_conditioning_scale)
|
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
|
elif (
|
|
isinstance(self.controlnet, MultiControlNetModel)
|
|
or is_compiled
|
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
|
):
|
|
if isinstance(controlnet_conditioning_scale, list):
|
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
|
raise ValueError(
|
|
"A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. "
|
|
"The conditioning scale must be fixed across the batch."
|
|
)
|
|
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
|
self.controlnet.nets
|
|
):
|
|
raise ValueError(
|
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
|
" the same length as the number of controlnets"
|
|
)
|
|
else:
|
|
assert False
|
|
|
|
if not isinstance(control_guidance_start, (tuple, list)):
|
|
control_guidance_start = [control_guidance_start]
|
|
|
|
if not isinstance(control_guidance_end, (tuple, list)):
|
|
control_guidance_end = [control_guidance_end]
|
|
|
|
if len(control_guidance_start) != len(control_guidance_end):
|
|
raise ValueError(
|
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
|
)
|
|
|
|
if isinstance(self.controlnet, MultiControlNetModel):
|
|
if len(control_guidance_start) != len(self.controlnet.nets):
|
|
raise ValueError(
|
|
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
|
)
|
|
|
|
for start, end in zip(control_guidance_start, control_guidance_end):
|
|
if start >= end:
|
|
raise ValueError(
|
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
|
)
|
|
if start < 0.0:
|
|
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
|
if end > 1.0:
|
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
|
raise ValueError(
|
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
|
)
|
|
|
|
if ip_adapter_image_embeds is not None:
|
|
if not isinstance(ip_adapter_image_embeds, list):
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
|
)
|
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
|
)
|
|
|
|
def check_image(self, image, prompt, prompt_embeds):
|
|
image_is_pil = isinstance(image, PIL.Image.Image)
|
|
image_is_tensor = isinstance(image, torch.Tensor)
|
|
image_is_np = isinstance(image, np.ndarray)
|
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
|
|
|
if (
|
|
not image_is_pil
|
|
and not image_is_tensor
|
|
and not image_is_np
|
|
and not image_is_pil_list
|
|
and not image_is_tensor_list
|
|
and not image_is_np_list
|
|
):
|
|
raise TypeError(
|
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
|
)
|
|
|
|
if image_is_pil:
|
|
image_batch_size = 1
|
|
else:
|
|
image_batch_size = len(image)
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
prompt_batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
prompt_batch_size = len(prompt)
|
|
elif prompt_embeds is not None:
|
|
prompt_batch_size = prompt_embeds.shape[0]
|
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
|
raise ValueError(
|
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
|
)
|
|
|
|
def prepare_image(
|
|
self,
|
|
image,
|
|
width,
|
|
height,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
device,
|
|
dtype,
|
|
do_classifier_free_guidance=False,
|
|
guess_mode=False,
|
|
):
|
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
|
image_batch_size = image.shape[0]
|
|
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
# image batch size is the same as prompt batch size
|
|
repeat_by = num_images_per_prompt
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
if do_classifier_free_guidance and not guess_mode:
|
|
image = torch.cat([image] * 2)
|
|
|
|
return image
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
int(height) // self.vae_scale_factor,
|
|
int(width) // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
|
def get_guidance_scale_embedding(
|
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
|
) -> torch.Tensor:
|
|
"""
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
|
Args:
|
|
w (`torch.Tensor`):
|
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
|
embedding_dim (`int`, *optional*, defaults to 512):
|
|
Dimension of the embeddings to generate.
|
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
|
Data type of the generated embeddings.
|
|
|
|
Returns:
|
|
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1: # zero pad
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def clip_skip(self):
|
|
return self._clip_skip
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
|
|
|
@property
|
|
def cross_attention_kwargs(self):
|
|
return self._cross_attention_kwargs
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
mode: Optional[str] = "generate",
|
|
draw_pos: Optional[Union[str, torch.Tensor]] = None,
|
|
ori_image: Optional[Union[str, torch.Tensor]] = None,
|
|
timesteps: List[int] = None,
|
|
sigmas: List[float] = None,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
guess_mode: bool = False,
|
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
|
clip_skip: Optional[int] = None,
|
|
callback_on_step_end: Optional[
|
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
|
] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
The call function to the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
|
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
|
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
|
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
|
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
|
images must be passed as a list such that each element of the list can be correctly batched for input
|
|
to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single
|
|
ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple
|
|
ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.
|
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
passed will be used. Must be in descending order.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
|
will be used.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor is generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
|
provided, text embeddings are generated from the `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
|
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
|
every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
|
the corresponding scale as a list.
|
|
guess_mode (`bool`, *optional*, defaults to `False`):
|
|
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
|
The percentage of total steps at which the ControlNet starts applying.
|
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
The percentage of total steps at which the ControlNet stops applying.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
|
"not-safe-for-work" (nsfw) content.
|
|
"""
|
|
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
if callback is not None:
|
|
deprecate(
|
|
"callback",
|
|
"1.0.0",
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
)
|
|
if callback_steps is not None:
|
|
deprecate(
|
|
"callback_steps",
|
|
"1.0.0",
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
)
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
|
|
|
# align format for control guidance
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
|
control_guidance_start, control_guidance_end = (
|
|
mult * [control_guidance_start],
|
|
mult * [control_guidance_end],
|
|
)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
# image,
|
|
callback_steps,
|
|
negative_prompt,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
controlnet_conditioning_scale,
|
|
control_guidance_start,
|
|
control_guidance_end,
|
|
callback_on_step_end_tensor_inputs,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._clip_skip = clip_skip
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
|
|
|
global_pool_conditions = (
|
|
controlnet.config.global_pool_conditions
|
|
if isinstance(controlnet, ControlNetModel)
|
|
else controlnet.nets[0].config.global_pool_conditions
|
|
)
|
|
guess_mode = guess_mode or global_pool_conditions
|
|
|
|
prompt, texts = self.modify_prompt(prompt)
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
|
)
|
|
draw_pos = draw_pos.to(device=device) if isinstance(draw_pos, torch.Tensor) else draw_pos
|
|
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_embedding_module(
|
|
prompt,
|
|
texts,
|
|
negative_prompt,
|
|
num_images_per_prompt,
|
|
mode,
|
|
draw_pos,
|
|
)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
device,
|
|
batch_size * num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
)
|
|
|
|
# 3.5 Optionally get Guidance Scale Embedding
|
|
timestep_cond = None
|
|
if self.unet.config.time_cond_proj_dim is not None:
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
|
timestep_cond = self.get_guidance_scale_embedding(
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
|
).to(device=device, dtype=latents.dtype)
|
|
|
|
# 4. Prepare image
|
|
if isinstance(controlnet, ControlNetModel):
|
|
guided_hint = self.auxiliary_latent_module(
|
|
text_info=text_info,
|
|
mode=mode,
|
|
draw_pos=draw_pos,
|
|
ori_image=ori_image,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
np_hint=np_hint,
|
|
)
|
|
height, width = 512, 512
|
|
else:
|
|
assert False
|
|
|
|
# 5. Prepare timesteps
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
|
)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
# 6. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 7.1 Add image embeds for IP-Adapter
|
|
added_cond_kwargs = (
|
|
{"image_embeds": image_embeds}
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
|
else None
|
|
)
|
|
|
|
# 7.2 Create tensor stating which controlnets to keep
|
|
controlnet_keep = []
|
|
for i in range(len(timesteps)):
|
|
keeps = [
|
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
|
for s, e in zip(control_guidance_start, control_guidance_end)
|
|
]
|
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
|
|
|
# 8. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
is_unet_compiled = is_compiled_module(self.unet)
|
|
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# Relevant thread:
|
|
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
|
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
|
torch._inductor.cudagraph_mark_step_begin()
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# controlnet(s) inference
|
|
if guess_mode and self.do_classifier_free_guidance:
|
|
# Infer ControlNet only for the conditional batch.
|
|
control_model_input = latents
|
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
|
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
|
else:
|
|
control_model_input = latent_model_input
|
|
controlnet_prompt_embeds = prompt_embeds
|
|
|
|
if isinstance(controlnet_keep[i], list):
|
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
|
else:
|
|
controlnet_cond_scale = controlnet_conditioning_scale
|
|
if isinstance(controlnet_cond_scale, list):
|
|
controlnet_cond_scale = controlnet_cond_scale[0]
|
|
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
control_model_input.to(self.controlnet.dtype),
|
|
t,
|
|
encoder_hidden_states=controlnet_prompt_embeds,
|
|
controlnet_cond=guided_hint,
|
|
conditioning_scale=cond_scale,
|
|
guess_mode=guess_mode,
|
|
return_dict=False,
|
|
)
|
|
|
|
if guess_mode and self.do_classifier_free_guidance:
|
|
# Inferred ControlNet only for the conditional batch.
|
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
|
# add 0 to the unconditional batch to keep it unchanged.
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep_cond=timestep_cond,
|
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
# If we do sequential model offloading, let's offload unet and controlnet
|
|
# manually for max memory savings
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.unet.to("cpu")
|
|
self.controlnet.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
if not output_type == "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
|
0
|
|
]
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
else:
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
|
|
if has_nsfw_concept is None:
|
|
do_denormalize = [True] * image.shape[0]
|
|
else:
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
def to(self, *args, **kwargs):
|
|
super().to(*args, **kwargs)
|
|
self.text_embedding_module.to(*args, **kwargs)
|
|
self.auxiliary_latent_module.to(*args, **kwargs)
|
|
return self
|