mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* fix: group offloading to support standalone computational layers in block-level offloading * test: for models with standalone and deeply nested layers in block-level offloading * feat: support for block-level offloading in group offloading config * fix: group offload block modules to AutoencoderKL and AutoencoderKLWan * fix: update group offloading tests to use AutoencoderKL and adjust input dimensions * refactor: streamline block offloading logic * Apply style fixes * update tests * update * fix for failing tests * clean up * revert to use skip_keys * clean up --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
569 lines
23 KiB
Python
569 lines
23 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import contextlib
|
|
import gc
|
|
import unittest
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
from diffusers import AutoencoderKL
|
|
from diffusers.hooks import HookRegistry, ModelHook
|
|
from diffusers.models import ModelMixin
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
from diffusers.utils import get_logger
|
|
from diffusers.utils.import_utils import compare_versions
|
|
|
|
from ..testing_utils import (
|
|
backend_empty_cache,
|
|
backend_max_memory_allocated,
|
|
backend_reset_peak_memory_stats,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
class DummyBlock(torch.nn.Module):
|
|
def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
|
|
super().__init__()
|
|
|
|
self.proj_in = torch.nn.Linear(in_features, hidden_features)
|
|
self.activation = torch.nn.ReLU()
|
|
self.proj_out = torch.nn.Linear(hidden_features, out_features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj_in(x)
|
|
x = self.activation(x)
|
|
x = self.proj_out(x)
|
|
return x
|
|
|
|
|
|
class DummyModel(ModelMixin):
|
|
def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
|
|
super().__init__()
|
|
|
|
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
|
|
self.activation = torch.nn.ReLU()
|
|
self.blocks = torch.nn.ModuleList(
|
|
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
|
|
)
|
|
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.linear_1(x)
|
|
x = self.activation(x)
|
|
for block in self.blocks:
|
|
x = block(x)
|
|
x = self.linear_2(x)
|
|
return x
|
|
|
|
|
|
# This model implementation contains one type of block (single_blocks) instantiated before another type of block (double_blocks).
|
|
# The invocation order of these blocks, however, is first the double_blocks and then the single_blocks.
|
|
# With group offloading implementation before https://github.com/huggingface/diffusers/pull/11375, such a modeling implementation
|
|
# would result in a device mismatch error because of the assumptions made by the code. The failure case occurs when using:
|
|
# offload_type="block_level", num_blocks_per_group=2, use_stream=True
|
|
# Post the linked PR, the implementation will work as expected.
|
|
class DummyModelWithMultipleBlocks(ModelMixin):
|
|
def __init__(
|
|
self, in_features: int, hidden_features: int, out_features: int, num_layers: int, num_single_layers: int
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
|
|
self.activation = torch.nn.ReLU()
|
|
self.single_blocks = torch.nn.ModuleList(
|
|
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_single_layers)]
|
|
)
|
|
self.double_blocks = torch.nn.ModuleList(
|
|
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
|
|
)
|
|
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.linear_1(x)
|
|
x = self.activation(x)
|
|
for block in self.double_blocks:
|
|
x = block(x)
|
|
for block in self.single_blocks:
|
|
x = block(x)
|
|
x = self.linear_2(x)
|
|
return x
|
|
|
|
|
|
# Test for https://github.com/huggingface/diffusers/pull/12077
|
|
class DummyModelWithLayerNorm(ModelMixin):
|
|
def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
|
|
super().__init__()
|
|
|
|
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
|
|
self.activation = torch.nn.ReLU()
|
|
self.blocks = torch.nn.ModuleList(
|
|
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
|
|
)
|
|
self.layer_norm = torch.nn.LayerNorm(hidden_features, elementwise_affine=True)
|
|
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.linear_1(x)
|
|
x = self.activation(x)
|
|
for block in self.blocks:
|
|
x = block(x)
|
|
x = self.layer_norm(x)
|
|
x = self.linear_2(x)
|
|
return x
|
|
|
|
|
|
class DummyPipeline(DiffusionPipeline):
|
|
model_cpu_offload_seq = "model"
|
|
|
|
def __init__(self, model: torch.nn.Module) -> None:
|
|
super().__init__()
|
|
|
|
self.register_modules(model=model)
|
|
|
|
def __call__(self, x: torch.Tensor) -> torch.Tensor:
|
|
for _ in range(2):
|
|
x = x + 0.1 * self.model(x)
|
|
return x
|
|
|
|
|
|
class LayerOutputTrackerHook(ModelHook):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.outputs = []
|
|
|
|
def post_forward(self, module, output):
|
|
self.outputs.append(output)
|
|
return output
|
|
|
|
|
|
# Model with only standalone computational layers at top level
|
|
class DummyModelWithStandaloneLayers(ModelMixin):
|
|
def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
|
|
super().__init__()
|
|
|
|
self.layer1 = torch.nn.Linear(in_features, hidden_features)
|
|
self.activation = torch.nn.ReLU()
|
|
self.layer2 = torch.nn.Linear(hidden_features, hidden_features)
|
|
self.layer3 = torch.nn.Linear(hidden_features, out_features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.layer1(x)
|
|
x = self.activation(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
return x
|
|
|
|
|
|
# Model with deeply nested structure
|
|
class DummyModelWithDeeplyNestedBlocks(ModelMixin):
|
|
def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
|
|
super().__init__()
|
|
|
|
self.input_layer = torch.nn.Linear(in_features, hidden_features)
|
|
self.container = ContainerWithNestedModuleList(hidden_features)
|
|
self.output_layer = torch.nn.Linear(hidden_features, out_features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.input_layer(x)
|
|
x = self.container(x)
|
|
x = self.output_layer(x)
|
|
return x
|
|
|
|
|
|
class ContainerWithNestedModuleList(torch.nn.Module):
|
|
def __init__(self, features: int) -> None:
|
|
super().__init__()
|
|
|
|
# Top-level computational layer
|
|
self.proj_in = torch.nn.Linear(features, features)
|
|
|
|
# Nested container with ModuleList
|
|
self.nested_container = NestedContainer(features)
|
|
|
|
# Another top-level computational layer
|
|
self.proj_out = torch.nn.Linear(features, features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj_in(x)
|
|
x = self.nested_container(x)
|
|
x = self.proj_out(x)
|
|
return x
|
|
|
|
|
|
class NestedContainer(torch.nn.Module):
|
|
def __init__(self, features: int) -> None:
|
|
super().__init__()
|
|
|
|
self.blocks = torch.nn.ModuleList([torch.nn.Linear(features, features), torch.nn.Linear(features, features)])
|
|
self.norm = torch.nn.LayerNorm(features)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
for block in self.blocks:
|
|
x = block(x)
|
|
x = self.norm(x)
|
|
return x
|
|
|
|
|
|
@require_torch_accelerator
|
|
class GroupOffloadTests(unittest.TestCase):
|
|
in_features = 64
|
|
hidden_features = 256
|
|
out_features = 64
|
|
num_layers = 4
|
|
|
|
def setUp(self):
|
|
with torch.no_grad():
|
|
self.model = self.get_model()
|
|
self.input = torch.randn((4, self.in_features)).to(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
|
|
del self.model
|
|
del self.input
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
def get_model(self):
|
|
torch.manual_seed(0)
|
|
return DummyModel(
|
|
in_features=self.in_features,
|
|
hidden_features=self.hidden_features,
|
|
out_features=self.out_features,
|
|
num_layers=self.num_layers,
|
|
)
|
|
|
|
def test_offloading_forward_pass(self):
|
|
@torch.no_grad()
|
|
def run_forward(model):
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
self.assertTrue(
|
|
all(
|
|
module._diffusers_hook.get_hook("group_offloading") is not None
|
|
for module in model.modules()
|
|
if hasattr(module, "_diffusers_hook")
|
|
)
|
|
)
|
|
model.eval()
|
|
output = model(self.input)[0].cpu()
|
|
max_memory_allocated = backend_max_memory_allocated(torch_device)
|
|
return output, max_memory_allocated
|
|
|
|
self.model.to(torch_device)
|
|
output_without_group_offloading, mem_baseline = run_forward(self.model)
|
|
self.model.to("cpu")
|
|
|
|
model = self.get_model()
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
|
output_with_group_offloading1, mem1 = run_forward(model)
|
|
|
|
model = self.get_model()
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
|
|
output_with_group_offloading2, mem2 = run_forward(model)
|
|
|
|
model = self.get_model()
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
|
|
output_with_group_offloading3, mem3 = run_forward(model)
|
|
|
|
model = self.get_model()
|
|
model.enable_group_offload(torch_device, offload_type="leaf_level")
|
|
output_with_group_offloading4, mem4 = run_forward(model)
|
|
|
|
model = self.get_model()
|
|
model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
|
|
output_with_group_offloading5, mem5 = run_forward(model)
|
|
|
|
# Precision assertions - offloading should not impact the output
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
|
|
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))
|
|
|
|
# Memory assertions - offloading should reduce memory usage
|
|
self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline)
|
|
|
|
def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self):
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
|
logger = get_logger("diffusers.models.modeling_utils")
|
|
logger.setLevel("INFO")
|
|
with self.assertLogs(logger, level="WARNING") as cm:
|
|
self.model.to(torch_device)
|
|
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
|
|
|
|
def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self):
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
pipe = DummyPipeline(self.model)
|
|
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
|
logger = get_logger("diffusers.pipelines.pipeline_utils")
|
|
logger.setLevel("INFO")
|
|
with self.assertLogs(logger, level="WARNING") as cm:
|
|
pipe.to(torch_device)
|
|
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
|
|
|
|
def test_error_raised_if_streams_used_and_no_accelerator_device(self):
|
|
torch_accelerator_module = getattr(torch, torch_device, torch.cuda)
|
|
original_is_available = torch_accelerator_module.is_available
|
|
torch_accelerator_module.is_available = lambda: False
|
|
with self.assertRaises(ValueError):
|
|
self.model.enable_group_offload(
|
|
onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True
|
|
)
|
|
torch_accelerator_module.is_available = original_is_available
|
|
|
|
def test_error_raised_if_supports_group_offloading_false(self):
|
|
self.model._supports_group_offloading = False
|
|
with self.assertRaisesRegex(ValueError, "does not support group offloading"):
|
|
self.model.enable_group_offload(onload_device=torch.device(torch_device))
|
|
|
|
def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
|
|
pipe = DummyPipeline(self.model)
|
|
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
|
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self):
|
|
pipe = DummyPipeline(self.model)
|
|
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
|
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self):
|
|
pipe = DummyPipeline(self.model)
|
|
pipe.enable_model_cpu_offload()
|
|
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
|
|
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
|
|
|
def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self):
|
|
pipe = DummyPipeline(self.model)
|
|
pipe.enable_sequential_cpu_offload()
|
|
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
|
|
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
|
|
|
|
def test_block_level_stream_with_invocation_order_different_from_initialization_order(self):
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
|
|
model = DummyModelWithMultipleBlocks(
|
|
in_features=self.in_features,
|
|
hidden_features=self.hidden_features,
|
|
out_features=self.out_features,
|
|
num_layers=self.num_layers,
|
|
num_single_layers=self.num_layers + 1,
|
|
)
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
|
|
|
|
context = contextlib.nullcontext()
|
|
if compare_versions("diffusers", "<=", "0.33.0"):
|
|
# Will raise a device mismatch RuntimeError mentioning weights are on CPU but input is on device
|
|
context = self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device")
|
|
|
|
with context:
|
|
model(self.input)
|
|
|
|
@parameterized.expand([("block_level",), ("leaf_level",)])
|
|
def test_block_level_offloading_with_parameter_only_module_group(self, offload_type: str):
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
|
|
def apply_layer_output_tracker_hook(model: DummyModelWithLayerNorm):
|
|
for name, module in model.named_modules():
|
|
registry = HookRegistry.check_if_exists_or_initialize(module)
|
|
hook = LayerOutputTrackerHook()
|
|
registry.register_hook(hook, "layer_output_tracker")
|
|
|
|
model_ref = DummyModelWithLayerNorm(128, 256, 128, 2)
|
|
model = DummyModelWithLayerNorm(128, 256, 128, 2)
|
|
|
|
model.load_state_dict(model_ref.state_dict(), strict=True)
|
|
|
|
model_ref.to(torch_device)
|
|
model.enable_group_offload(torch_device, offload_type=offload_type, num_blocks_per_group=1, use_stream=True)
|
|
|
|
apply_layer_output_tracker_hook(model_ref)
|
|
apply_layer_output_tracker_hook(model)
|
|
|
|
x = torch.randn(2, 128).to(torch_device)
|
|
|
|
out_ref = model_ref(x)
|
|
out = model(x)
|
|
self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match.")
|
|
|
|
num_repeats = 2
|
|
for i in range(num_repeats):
|
|
out_ref = model_ref(x)
|
|
out = model(x)
|
|
|
|
self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match after multiple invocations.")
|
|
|
|
for (ref_name, ref_module), (name, module) in zip(model_ref.named_modules(), model.named_modules()):
|
|
assert ref_name == name
|
|
ref_outputs = (
|
|
HookRegistry.check_if_exists_or_initialize(ref_module).get_hook("layer_output_tracker").outputs
|
|
)
|
|
outputs = HookRegistry.check_if_exists_or_initialize(module).get_hook("layer_output_tracker").outputs
|
|
cumulated_absmax = 0.0
|
|
for i in range(len(outputs)):
|
|
diff = ref_outputs[0] - outputs[i]
|
|
absdiff = diff.abs()
|
|
absmax = absdiff.max().item()
|
|
cumulated_absmax += absmax
|
|
self.assertLess(
|
|
cumulated_absmax, 1e-5, f"Output differences for {name} exceeded threshold: {cumulated_absmax:.5f}"
|
|
)
|
|
|
|
def test_vae_like_model_without_streams(self):
|
|
"""Test VAE-like model with block-level offloading but without streams."""
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
|
|
config = self.get_autoencoder_kl_config()
|
|
model = AutoencoderKL(**config)
|
|
|
|
model_ref = AutoencoderKL(**config)
|
|
model_ref.load_state_dict(model.state_dict(), strict=True)
|
|
model_ref.to(torch_device)
|
|
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=False)
|
|
|
|
x = torch.randn(2, 3, 32, 32).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
out_ref = model_ref(x).sample
|
|
out = model(x).sample
|
|
|
|
self.assertTrue(
|
|
torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match for VAE-like model without streams."
|
|
)
|
|
|
|
def test_model_with_only_standalone_layers(self):
|
|
"""Test that models with only standalone layers (no ModuleList/Sequential) work with block-level offloading."""
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
|
|
model = DummyModelWithStandaloneLayers(in_features=64, hidden_features=128, out_features=64)
|
|
|
|
model_ref = DummyModelWithStandaloneLayers(in_features=64, hidden_features=128, out_features=64)
|
|
model_ref.load_state_dict(model.state_dict(), strict=True)
|
|
model_ref.to(torch_device)
|
|
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
|
|
|
|
x = torch.randn(2, 64).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
for i in range(2):
|
|
out_ref = model_ref(x)
|
|
out = model(x)
|
|
self.assertTrue(
|
|
torch.allclose(out_ref, out, atol=1e-5),
|
|
f"Outputs do not match at iteration {i} for model with standalone layers.",
|
|
)
|
|
|
|
@parameterized.expand([("block_level",), ("leaf_level",)])
|
|
def test_standalone_conv_layers_with_both_offload_types(self, offload_type: str):
|
|
"""Test that standalone Conv2d layers work correctly with both block-level and leaf-level offloading."""
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
|
|
config = self.get_autoencoder_kl_config()
|
|
model = AutoencoderKL(**config)
|
|
|
|
model_ref = AutoencoderKL(**config)
|
|
model_ref.load_state_dict(model.state_dict(), strict=True)
|
|
model_ref.to(torch_device)
|
|
|
|
model.enable_group_offload(torch_device, offload_type=offload_type, num_blocks_per_group=1, use_stream=True)
|
|
|
|
x = torch.randn(2, 3, 32, 32).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
out_ref = model_ref(x).sample
|
|
out = model(x).sample
|
|
|
|
self.assertTrue(
|
|
torch.allclose(out_ref, out, atol=1e-5),
|
|
f"Outputs do not match for standalone Conv layers with {offload_type}.",
|
|
)
|
|
|
|
def test_multiple_invocations_with_vae_like_model(self):
|
|
"""Test that multiple forward passes work correctly with VAE-like model."""
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
|
|
config = self.get_autoencoder_kl_config()
|
|
model = AutoencoderKL(**config)
|
|
|
|
model_ref = AutoencoderKL(**config)
|
|
model_ref.load_state_dict(model.state_dict(), strict=True)
|
|
model_ref.to(torch_device)
|
|
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
|
|
|
|
x = torch.randn(2, 3, 32, 32).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
for i in range(2):
|
|
out_ref = model_ref(x).sample
|
|
out = model(x).sample
|
|
self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), f"Outputs do not match at iteration {i}.")
|
|
|
|
def test_nested_container_parameters_offloading(self):
|
|
"""Test that parameters from non-computational layers in nested containers are handled correctly."""
|
|
if torch.device(torch_device).type not in ["cuda", "xpu"]:
|
|
return
|
|
|
|
model = DummyModelWithDeeplyNestedBlocks(in_features=64, hidden_features=128, out_features=64)
|
|
|
|
model_ref = DummyModelWithDeeplyNestedBlocks(in_features=64, hidden_features=128, out_features=64)
|
|
model_ref.load_state_dict(model.state_dict(), strict=True)
|
|
model_ref.to(torch_device)
|
|
|
|
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
|
|
|
|
x = torch.randn(2, 64).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
for i in range(2):
|
|
out_ref = model_ref(x)
|
|
out = model(x)
|
|
self.assertTrue(
|
|
torch.allclose(out_ref, out, atol=1e-5),
|
|
f"Outputs do not match at iteration {i} for nested parameters.",
|
|
)
|
|
|
|
def get_autoencoder_kl_config(self, block_out_channels=None, norm_num_groups=None):
|
|
block_out_channels = block_out_channels or [2, 4]
|
|
norm_num_groups = norm_num_groups or 2
|
|
init_dict = {
|
|
"block_out_channels": block_out_channels,
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
|
|
"up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
|
|
"latent_channels": 4,
|
|
"norm_num_groups": norm_num_groups,
|
|
"layers_per_block": 1,
|
|
}
|
|
return init_dict
|