mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
90 lines
3.1 KiB
Python
90 lines
3.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import OmniGenTransformer2DModel
|
|
|
|
from ...testing_utils import enable_full_determinism, torch_device
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class OmniGenTransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = OmniGenTransformer2DModel
|
|
main_input_name = "hidden_states"
|
|
uses_custom_attn_processor = True
|
|
model_split_percents = [0.1, 0.1, 0.1]
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_channels = 4
|
|
height = 8
|
|
width = 8
|
|
sequence_length = 24
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
|
timestep = torch.rand(size=(batch_size,), dtype=hidden_states.dtype).to(torch_device)
|
|
input_ids = torch.randint(0, 10, (batch_size, sequence_length)).to(torch_device)
|
|
input_img_latents = [torch.randn((1, num_channels, height, width)).to(torch_device)]
|
|
input_image_sizes = {0: [[0, 0 + height * width // 2 // 2]]}
|
|
|
|
attn_seq_length = sequence_length + 1 + height * width // 2 // 2
|
|
attention_mask = torch.ones((batch_size, attn_seq_length, attn_seq_length)).to(torch_device)
|
|
position_ids = torch.LongTensor([list(range(attn_seq_length))] * batch_size).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"timestep": timestep,
|
|
"input_ids": input_ids,
|
|
"input_img_latents": input_img_latents,
|
|
"input_image_sizes": input_image_sizes,
|
|
"attention_mask": attention_mask,
|
|
"position_ids": position_ids,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 8, 8)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 8, 8)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"hidden_size": 16,
|
|
"num_attention_heads": 4,
|
|
"num_key_value_heads": 4,
|
|
"intermediate_size": 32,
|
|
"num_layers": 20,
|
|
"pad_token_id": 0,
|
|
"vocab_size": 1000,
|
|
"in_channels": 4,
|
|
"time_step_dim": 4,
|
|
"rope_scaling": {"long_factor": list(range(1, 3)), "short_factor": list(range(1, 3))},
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"OmniGenTransformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|