mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
682 lines
26 KiB
Python
682 lines
26 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import gc
|
|
import importlib
|
|
import sys
|
|
import time
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from packaging import version
|
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
ControlNetModel,
|
|
EulerDiscreteScheduler,
|
|
LCMScheduler,
|
|
StableDiffusionXLAdapterPipeline,
|
|
StableDiffusionXLControlNetPipeline,
|
|
StableDiffusionXLPipeline,
|
|
T2IAdapter,
|
|
)
|
|
from diffusers.utils import logging
|
|
from diffusers.utils.import_utils import is_accelerate_available
|
|
|
|
from ..testing_utils import (
|
|
CaptureLogger,
|
|
backend_empty_cache,
|
|
is_flaky,
|
|
load_image,
|
|
nightly,
|
|
numpy_cosine_similarity_distance,
|
|
require_peft_backend,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
sys.path.append(".")
|
|
|
|
from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set, state_dicts_almost_equal # noqa: E402
|
|
|
|
|
|
if is_accelerate_available():
|
|
from accelerate.utils import release_memory
|
|
|
|
|
|
class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
|
|
has_two_text_encoders = True
|
|
pipeline_class = StableDiffusionXLPipeline
|
|
scheduler_cls = EulerDiscreteScheduler
|
|
scheduler_kwargs = {
|
|
"beta_start": 0.00085,
|
|
"beta_end": 0.012,
|
|
"beta_schedule": "scaled_linear",
|
|
"timestep_spacing": "leading",
|
|
"steps_offset": 1,
|
|
}
|
|
unet_kwargs = {
|
|
"block_out_channels": (32, 64),
|
|
"layers_per_block": 2,
|
|
"sample_size": 32,
|
|
"in_channels": 4,
|
|
"out_channels": 4,
|
|
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
"attention_head_dim": (2, 4),
|
|
"use_linear_projection": True,
|
|
"addition_embed_type": "text_time",
|
|
"addition_time_embed_dim": 8,
|
|
"transformer_layers_per_block": (1, 2),
|
|
"projection_class_embeddings_input_dim": 80, # 6 * 8 + 32
|
|
"cross_attention_dim": 64,
|
|
}
|
|
vae_kwargs = {
|
|
"block_out_channels": [32, 64],
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
"latent_channels": 4,
|
|
"sample_size": 128,
|
|
}
|
|
text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
|
|
tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
|
|
text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "peft-internal-testing/tiny-clip-text-2"
|
|
tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 64, 64, 3)
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
@is_flaky
|
|
def test_multiple_wrong_adapter_name_raises_error(self):
|
|
super().test_multiple_wrong_adapter_name_raises_error()
|
|
|
|
def test_simple_inference_with_text_denoiser_lora_unfused(self):
|
|
if torch.cuda.is_available():
|
|
expected_atol = 9e-2
|
|
expected_rtol = 9e-2
|
|
else:
|
|
expected_atol = 1e-3
|
|
expected_rtol = 1e-3
|
|
|
|
super().test_simple_inference_with_text_denoiser_lora_unfused(
|
|
expected_atol=expected_atol, expected_rtol=expected_rtol
|
|
)
|
|
|
|
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
|
|
if torch.cuda.is_available():
|
|
expected_atol = 9e-2
|
|
expected_rtol = 9e-2
|
|
else:
|
|
expected_atol = 1e-3
|
|
expected_rtol = 1e-3
|
|
|
|
super().test_simple_inference_with_text_lora_denoiser_fused_multi(
|
|
expected_atol=expected_atol, expected_rtol=expected_rtol
|
|
)
|
|
|
|
def test_lora_scale_kwargs_match_fusion(self):
|
|
if torch.cuda.is_available():
|
|
expected_atol = 9e-2
|
|
expected_rtol = 9e-2
|
|
else:
|
|
expected_atol = 1e-3
|
|
expected_rtol = 1e-3
|
|
|
|
super().test_lora_scale_kwargs_match_fusion(expected_atol=expected_atol, expected_rtol=expected_rtol)
|
|
|
|
|
|
@slow
|
|
@nightly
|
|
@require_torch_accelerator
|
|
@require_peft_backend
|
|
class LoraSDXLIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_sdxl_1_0_lora(self):
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
pipe.enable_model_cpu_offload()
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
|
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
|
|
images = images[0, -3:, -3:, -1].flatten()
|
|
expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535])
|
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images)
|
|
assert max_diff < 1e-4
|
|
|
|
pipe.unload_lora_weights()
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_1_0_blockwise_lora(self):
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
pipe.enable_model_cpu_offload()
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, adapter_name="offset")
|
|
scales = {
|
|
"unet": {
|
|
"down": {"block_1": [1.0, 1.0], "block_2": [1.0, 1.0]},
|
|
"mid": 1.0,
|
|
"up": {"block_0": [1.0, 1.0, 1.0], "block_1": [1.0, 1.0, 1.0]},
|
|
},
|
|
}
|
|
pipe.set_adapters(["offset"], [scales])
|
|
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
|
|
images = images[0, -3:, -3:, -1].flatten()
|
|
expected = np.array([00.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535])
|
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images)
|
|
assert max_diff < 1e-4
|
|
|
|
pipe.unload_lora_weights()
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_lcm_lora(self):
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
lora_model_id = "latent-consistency/lcm-lora-sdxl"
|
|
|
|
pipe.load_lora_weights(lora_model_id)
|
|
|
|
image = pipe(
|
|
"masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
|
|
).images[0]
|
|
|
|
expected_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png"
|
|
)
|
|
|
|
image_np = pipe.image_processor.pil_to_numpy(image)
|
|
expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)
|
|
|
|
max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
|
|
assert max_diff < 1e-4
|
|
|
|
pipe.unload_lora_weights()
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_1_0_lora_fusion(self):
|
|
generator = torch.Generator().manual_seed(0)
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
|
|
|
pipe.fuse_lora()
|
|
# We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
|
|
# silently deleted - otherwise this will CPU OOM
|
|
pipe.unload_lora_weights()
|
|
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
|
|
images = images[0, -3:, -3:, -1].flatten()
|
|
# This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
|
|
expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535])
|
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images)
|
|
assert max_diff < 1e-4
|
|
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_1_0_lora_unfusion(self):
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
|
pipe.fuse_lora()
|
|
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
|
|
).images
|
|
images_with_fusion = images.flatten()
|
|
|
|
pipe.unfuse_lora()
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
|
|
).images
|
|
images_without_fusion = images.flatten()
|
|
|
|
max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion)
|
|
assert max_diff < 1e-4
|
|
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_1_0_lora_unfusion_effectivity(self):
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
generator = torch.Generator().manual_seed(0)
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
original_image_slice = images[0, -3:, -3:, -1].flatten()
|
|
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
|
pipe.fuse_lora()
|
|
|
|
generator = torch.Generator().manual_seed(0)
|
|
_ = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
|
|
pipe.unfuse_lora()
|
|
|
|
# We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights
|
|
pipe.unload_lora_weights()
|
|
|
|
generator = torch.Generator().manual_seed(0)
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()
|
|
|
|
max_diff = numpy_cosine_similarity_distance(images_without_fusion_slice, original_image_slice)
|
|
assert max_diff < 1e-3
|
|
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_1_0_lora_fusion_efficiency(self):
|
|
generator = torch.Generator().manual_seed(0)
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
|
)
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
start_time = time.time()
|
|
for _ in range(3):
|
|
pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
end_time = time.time()
|
|
elapsed_time_non_fusion = end_time - start_time
|
|
|
|
del pipe
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
|
)
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
|
|
pipe.fuse_lora()
|
|
|
|
# We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
|
|
# silently deleted - otherwise this will CPU OOM
|
|
pipe.unload_lora_weights()
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
generator = torch.Generator().manual_seed(0)
|
|
start_time = time.time()
|
|
for _ in range(3):
|
|
pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
end_time = time.time()
|
|
elapsed_time_fusion = end_time - start_time
|
|
|
|
self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
|
|
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_1_0_last_ben(self):
|
|
generator = torch.Generator().manual_seed(0)
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
pipe.enable_model_cpu_offload()
|
|
lora_model_id = "TheLastBen/Papercut_SDXL"
|
|
lora_filename = "papercut.safetensors"
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
|
|
|
images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images
|
|
|
|
images = images[0, -3:, -3:, -1].flatten()
|
|
expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])
|
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images)
|
|
assert max_diff < 1e-3
|
|
|
|
pipe.unload_lora_weights()
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_1_0_fuse_unfuse_all(self):
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
|
)
|
|
text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
|
|
text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
|
|
unet_sd = copy.deepcopy(pipe.unet.state_dict())
|
|
|
|
pipe.load_lora_weights(
|
|
"davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
|
|
)
|
|
|
|
fused_te_state_dict = pipe.text_encoder.state_dict()
|
|
fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
|
|
unet_state_dict = pipe.unet.state_dict()
|
|
|
|
peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0")
|
|
|
|
def remap_key(key, sd):
|
|
# some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly
|
|
if (key in sd) or (not peft_ge_070):
|
|
return key
|
|
|
|
# instead of linear.weight, we now have linear.base_layer.weight, etc.
|
|
if key.endswith(".weight"):
|
|
key = key[:-7] + ".base_layer.weight"
|
|
elif key.endswith(".bias"):
|
|
key = key[:-5] + ".base_layer.bias"
|
|
return key
|
|
|
|
for key, value in text_encoder_1_sd.items():
|
|
key = remap_key(key, fused_te_state_dict)
|
|
self.assertTrue(torch.allclose(fused_te_state_dict[key], value))
|
|
|
|
for key, value in text_encoder_2_sd.items():
|
|
key = remap_key(key, fused_te_2_state_dict)
|
|
self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value))
|
|
|
|
for key, value in unet_state_dict.items():
|
|
self.assertTrue(torch.allclose(unet_state_dict[key], value))
|
|
|
|
pipe.fuse_lora()
|
|
pipe.unload_lora_weights()
|
|
|
|
assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
|
|
assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
|
|
assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
|
|
|
|
release_memory(pipe)
|
|
del unet_sd, text_encoder_1_sd, text_encoder_2_sd
|
|
|
|
def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
|
|
generator = torch.Generator().manual_seed(0)
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
pipe.enable_sequential_cpu_offload()
|
|
lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
|
|
lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
|
|
|
|
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
|
|
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
|
|
images = images[0, -3:, -3:, -1].flatten()
|
|
expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
|
|
|
|
max_diff = numpy_cosine_similarity_distance(expected, images)
|
|
assert max_diff < 1e-3
|
|
|
|
pipe.unload_lora_weights()
|
|
release_memory(pipe)
|
|
|
|
def test_controlnet_canny_lora(self):
|
|
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
|
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
|
|
)
|
|
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
|
|
pipe.enable_sequential_cpu_offload()
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "corgi"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
)
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
|
|
|
|
assert images[0].shape == (768, 512, 3)
|
|
|
|
original_image = images[0, -3:, -3:, -1].flatten()
|
|
expected_image = np.array([0.4574, 0.4487, 0.4435, 0.5163, 0.4396, 0.4411, 0.518, 0.4465, 0.4333])
|
|
|
|
max_diff = numpy_cosine_similarity_distance(expected_image, original_image)
|
|
assert max_diff < 1e-4
|
|
|
|
pipe.unload_lora_weights()
|
|
release_memory(pipe)
|
|
|
|
def test_sdxl_t2i_adapter_canny_lora(self):
|
|
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to(
|
|
"cpu"
|
|
)
|
|
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
|
adapter=adapter,
|
|
torch_dtype=torch.float16,
|
|
variant="fp16",
|
|
)
|
|
pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors")
|
|
pipe.enable_model_cpu_offload()
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "toy"
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png"
|
|
)
|
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
|
|
|
|
assert images[0].shape == (768, 512, 3)
|
|
|
|
image_slice = images[0, -3:, -3:, -1].flatten()
|
|
expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226])
|
|
assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4
|
|
|
|
@nightly
|
|
def test_sequential_fuse_unfuse(self):
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
|
)
|
|
|
|
# 1. round
|
|
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
pipe.fuse_lora()
|
|
|
|
generator = torch.Generator().manual_seed(0)
|
|
images = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
image_slice = images[0, -3:, -3:, -1].flatten()
|
|
|
|
pipe.unfuse_lora()
|
|
|
|
# 2. round
|
|
pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16)
|
|
pipe.fuse_lora()
|
|
pipe.unfuse_lora()
|
|
|
|
# 3. round
|
|
pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16)
|
|
pipe.fuse_lora()
|
|
pipe.unfuse_lora()
|
|
|
|
# 4. back to 1st round
|
|
pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
|
|
pipe.fuse_lora()
|
|
|
|
generator = torch.Generator().manual_seed(0)
|
|
images_2 = pipe(
|
|
"masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
|
|
).images
|
|
image_slice_2 = images_2[0, -3:, -3:, -1].flatten()
|
|
|
|
max_diff = numpy_cosine_similarity_distance(image_slice, image_slice_2)
|
|
assert max_diff < 1e-3
|
|
pipe.unload_lora_weights()
|
|
release_memory(pipe)
|
|
|
|
@nightly
|
|
def test_integration_logits_multi_adapter(self):
|
|
path = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
lora_id = "CiroN2022/toy-face"
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
|
pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
|
|
pipe = pipe.to(torch_device)
|
|
|
|
self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
|
|
|
|
prompt = "toy_face of a hacker with a hoodie"
|
|
|
|
lora_scale = 0.9
|
|
|
|
images = pipe(
|
|
prompt=prompt,
|
|
num_inference_steps=30,
|
|
generator=torch.manual_seed(0),
|
|
cross_attention_kwargs={"scale": lora_scale},
|
|
output_type="np",
|
|
).images
|
|
expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539])
|
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
|
assert max_diff < 1e-3
|
|
|
|
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
|
pipe.set_adapters("pixel")
|
|
|
|
prompt = "pixel art, a hacker with a hoodie, simple, flat colors"
|
|
images = pipe(
|
|
prompt,
|
|
num_inference_steps=30,
|
|
guidance_scale=7.5,
|
|
cross_attention_kwargs={"scale": lora_scale},
|
|
generator=torch.manual_seed(0),
|
|
output_type="np",
|
|
).images
|
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
|
expected_slice_scale = np.array(
|
|
[0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889]
|
|
)
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
|
assert max_diff < 1e-3
|
|
|
|
# multi-adapter inference
|
|
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
|
|
images = pipe(
|
|
prompt,
|
|
num_inference_steps=30,
|
|
guidance_scale=7.5,
|
|
cross_attention_kwargs={"scale": 1.0},
|
|
generator=torch.manual_seed(0),
|
|
output_type="np",
|
|
).images
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
|
expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909])
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
|
assert max_diff < 1e-3
|
|
|
|
# Lora disabled
|
|
pipe.disable_lora()
|
|
images = pipe(
|
|
prompt,
|
|
num_inference_steps=30,
|
|
guidance_scale=7.5,
|
|
cross_attention_kwargs={"scale": lora_scale},
|
|
generator=torch.manual_seed(0),
|
|
output_type="np",
|
|
).images
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
|
expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487])
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
|
assert max_diff < 1e-3
|
|
|
|
@nightly
|
|
def test_integration_logits_for_dora_lora(self):
|
|
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
|
|
|
logger = logging.get_logger("diffusers.loaders.lora_pipeline")
|
|
logger.setLevel(30)
|
|
with CaptureLogger(logger) as cap_logger:
|
|
pipeline.load_lora_weights("hf-internal-testing/dora-trained-on-kohya")
|
|
pipeline.enable_model_cpu_offload()
|
|
images = pipeline(
|
|
"photo of ohwx dog",
|
|
num_inference_steps=10,
|
|
generator=torch.manual_seed(0),
|
|
output_type="np",
|
|
).images
|
|
assert "It seems like you are using a DoRA checkpoint" in cap_logger.out
|
|
|
|
predicted_slice = images[0, -3:, -3:, -1].flatten()
|
|
expected_slice_scale = np.array([0.1817, 0.0697, 0.2346, 0.0900, 0.1261, 0.2279, 0.1767, 0.1991, 0.2886])
|
|
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
|
|
assert max_diff < 1e-3
|